COVID-19 Modified mRNA “Vaccines”: Lessons Learned from Clinical Trials, Mass Vaccination, and the Bio-Pharmaceutical Complex, Part 2

Authors

  • M. Nathaniel Mead Independent Researcher, McCullough Foundation
  • Stephanie Seneff Senior Research Scientist, MIT
  • Jessica Rose Independent Researcher
  • Russ Wolfinger Independent Researcher, Research Triangle Park
  • Nicolas Hulscher Epidemiologist/Fellow at McCullough Foundation
  • Peter A. McCullough Practicing MD in Internal Medicine, Cardiology, Epidemiology, and Public Health

DOI:

https://doi.org/10.56098/w66wjg87

Keywords:

adverse events, COVID-19 modmRNA injectable products, vaccines, COVID-19 Registrational Trials, immunity, serious adverse events, gene therapy products, safe and effective, all-cause mortality

Abstract

The COVID-19 modified mRNA (modmRNA) lipid nanoparticle-based “vaccines” are not classical antigen-based vaccines but instead prodrugs informed by gene therapy technology. Of considerable note, these products have been linked to atypical adverse and serious adverse event profiles. As discussed in Part 1, health-related risks and drawbacks were drastically misreported and underreported in the Pfizer and Moderna trial evaluations of these genetic products. Now in Part 2, we examine the main structural and functional aspects of these injectables. The COVID-19 modmRNA injectable products introduce a unique set of biological challenges to the human body with the potential to induce an extensive range of adverse, crippling, and life-threatening effects. Based on the fact that there is no current method to quantify host (cell-based) spike protein production in vivo following injection with these prodrugs, there is no standard “dose”. This is in part due to differences in spike protein production output, which depends on cell metabolism and transfection efficiency. It is therefore difficult to predict adverse event profiles on an individual basis, but considering that millions of adults across the world have reported severe and serious adverse events in the context of these modmRNA COVID-19 products, valid concerns are raised regarding injection of infants and younger age groups for whom COVID-19 poses only minimal risks. We address the process-related genetic impurities inherent in mass production of these products, and the potential risks posed by these contaminants. We then categorize the principal adverse events associated with the modmRNA products with a brief systems-based synopsis of each of the six domains of potential harms: (1) cardiovascular, (2) neurological, (3) hematologic; (4) immunological, (5) oncological, and (6) reproductive. We conclude with a discussion of the primary public health and regulatory issues arising from this evidence-informed synthesis of the literature and reiterate the urgency of imposing a global moratorium on the modmRNA-LNP-based platform.

Author Biographies

  • M. Nathaniel Mead, Independent Researcher, McCullough Foundation

    Biology and Nutritional Epidemiology, McCullough Foundation, Dallas, TX

  • Stephanie Seneff, Senior Research Scientist, MIT

    Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA

  • Jessica Rose, Independent Researcher

    Immunology and Public Health Research, Independent Research, Ottawa, Ontario, Canada

  • Russ Wolfinger, Independent Researcher, Research Triangle Park

    Biostatistics and Epidemiology, Independent Research, Research Triangle Park, NC, USA

  • Nicolas Hulscher, Epidemiologist/Fellow at McCullough Foundation

    Earned the Master of Public Health Degree from the University of Michigan in April 2024, now an Epidemiologist and Fellow at the McCullough Foundation

  • Peter A. McCullough, Practicing MD in Internal Medicine, Cardiology, Epidemiology, and Public Health

    Internal Medicine, Cardiology, Epidemiology, and Public Health, McCullough Foundation, Dallas, TX, USA

References

Aarstad, J. & Kvitastein, O. A. (2023). Is there a link between the 2021 COVID-19 vaccination uptake in Europe and 2022 excess all-cause mortality? Asian Pacific Journal of Health Sciences 10, 25-31. https://doi.org/10.20944/preprints202302.0350.v1

Abbattista, M., Martinelli, I., & Peyvandi, F. (2021). Comparison of adverse drug reactions among four COVID-19 vaccines in Europe using the EudraVigilance database: thrombosis at unusual sites. Journal of Thrombosis and Haemostasis. 19, 2554–2558. https://doi.org/10.1111/jth.15493

Abrams, C. S. & Barnes, G. D. (2023). SARS-CoV-2 Vaccination-induced thrombotic thrombocytopenia: a rare but serious immunologic complication. Annual Review of Medicine. 74, 65-74. https://doi.org/10.1146/annurev-med-043021-015237

Abuawwad, M. T., Taha, M. J. J., Taha, A. J., Kozaa, Y. A., Falah, O., Abuawwad, I. T., Hammad, E. M., Mahmoud, A. A., Aladawi, M., & Serhan, H. A. (2024). Guillain-Barré syndrome after COVID-19 vaccination: A systematic review and analysis of case reports. Clinical Neurology and Neurosurgery 238, 108183. https://doi.org/10.1016/j.clineuro.2024.108183

Acevedo-Whitehouse, K. & Bruno, R. (2023). Potential health risks of mRNA-based vaccine therapy: A hypothesis. Med Hypotheses 171, 111015. https://doi.org/10.1016/j.mehy.2023.111015

Adhikari, B, Bednash, JS., Horowitz, JC., Rubinstein, MP., Vlasova, AN. (2024) Brief research report: impact of vaccination on antibody responses and mortality from severe COVID-19. Frontiers in Immunology 15, 1325243. https://doi.org/10.3389/fimmu.2024.1325243

Afshar, Z. M., Barary, M., Babazadeh, A., Hosseinzadeh, R., Alijanpour, A., Miri, S. R., et al. (2022). SARS-CoV-2-related and COVID-19 vaccine-induced thromboembolic events: A comparative review. Reviews in Medical Virology. 32, e2327. https://doi.org/10.1002/rmv.2327

Agrawal, U., Bedston, S., McCowan, C., Oke, J., Patterson, L., Robertson, C., Akbari, A., et al. (2022). Severe COVID-19 outcomes after full vaccination of primary schedule and initial boosters: Pooled analysis of national prospective cohort studies of 30 million individuals in England, Northern Ireland, Scotland, and Wales. The Lancet 400(10360), 1305-1320. https://doi.org/10.1016/S0140-6736(22)01656-7

Ahmad, M. A., Kareem, O., Khushtar, M., Akbar, M., Haque, M. R., Iqubal, A., Haider, M. F., Pottoo, F. H., Abdulla, F. S., Al-Haidar, M. B., & Alhajri, N. (2022). Neuroinflammation: A Potential Risk for Dementia. International Journal of Molecular Sciences 23(2), 616. https://doi.org/10.3390/ijms23020616

AlRawi, H. Z., AlQurashi, A., AlDahan, D., Alkhudhayri, M., Alsharidah, A. R., Wani, T., & AlJaroudi, D. (2024). Association between receiving COVID-19 vaccine and menstrual cycle patterns among childbearing women: A cross-sectional study. Health Science Reports 7(5), e1934. https://doi.org/10.1002/hsr2.1934

Akinosoglou, K., Tzivaki, I., & Marangos, M. (2021). COVID-19 vaccine and autoimmunity: Awakening the sleeping dragon. Clinical Immunology 226, 108721. https://doi.org/10.1016/j.clim.2021.108721

Ai, L., Xu, A., & Xu, J. (2020). Roles of PD-1/PD-L1 pathway: signaling, cancer, and beyond. Advances in Experimental Medicine and Biology 1248, 33-59. https://doi.org/10.1007/978-981-15-3266-5_3

Alameh, M. G., Tombácz, I., Bettini, E., Lederer, K., Sittplangkoon, C., Wilmore, J. R., et al. (2021). Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity 54(12), 2877-2892.e7. https://doi.org/ 10.1016/j.immuni.2021.11.001 Erratum in: Immunity. 2022 Jun 14;55(6):1136-1138. https://doi.org/10.1016/j.immuni.2022.05.007

Aldén, M., Olofsson Falla, F., Yang, D., Barghouth, M., Luan, C., Rasmussen, M., & De Marinis, Y. (2022). Intracellular reverse transcription of Pfizer BioNTech COVID-19 mRNA vaccine BNT162b2 in vitro in human liver cell line. Current Issues in Molecular Biology, 44(3), 1115–1126. https://doi.org/10.3390/cimb44030073

Alegria C. (2023). UK - deaths from malignant neoplasms – individual causes, ages 15-44. 10 October 2023. https://phinancetechnologies.com/HumanityProjects/UK%20Cause%20of%20death%20Project%20-%20Malignant%20Neoplasm%20Deaths%2015-44%20-%20Individual%20Causes.htm

Alhossan A, Alsaran AK, Almahmudi AH, Aljohani ZS, Albishi MR, Almutairi AK. Adverse Events of COVID-19 Vaccination among the Saudi Population: A Systematic Review and Meta-Analysis. Vaccines (Basel). 2022;10(12):2089. https://doi.org/10.3390/vaccines10122089

Almas, T., Rehman, S., Mansour, E., Khedro, T., Alansari, A., Malik, J., Alshareef, N., Nagarajan, V.R., Al-Awaid, A.H., Alsufyani, R., Alsufyani, M., Rifai, A., Alzahrani, A., Nagarajan, D.R., Abdullatif, T., Gunasaegaram, V., Alzadjali, E., Subramanian, A., Rahman, A., Sattar, Y., Galo, J., Virk, H. U. H., & Alraies, M.C. (2022). Epidemiology, clinical ramifications, and cellular pathogenesis of COVID-19 mRNA-vaccination-induced adverse cardiovascular outcomes: A state-of-the-heart review. Biomedicine & Pharmacotherapy 149, 112843. https://doi.org/0.1016/j.biopha.2022.112843

Altarawneh, H. N., Chemaitelly, H., Ayoub, H. H., Tang, P., Hasan, M. R., Yassine, H., et al. J. (2022). Effects of previous infection and vaccination on symptomatic Omicron infections. New England Journal of Medicine 387(1), 21-34. https://doi.org/1056/NEJMoa2203965

Altman, P. M., Rowe, J., Hoy, W., Brady, G., Lefringhausen, A., Cosford, R., & Wauchope, B (2022). Did national security imperatives compromise COVID-19 vaccine safety? Trial Site News. Accessed: September 30, 2023: https://www.trialsitenews.com/a/did-national-security-imperatives-compromise-covid-19-vaccine-safety-adfea242

American Cancer Society. (2024). Cancer Facts & Figures 2024. https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2024/2024-cancer-facts-and-figures-acs.pdf

Amir, M., Latha, S., Sharma, R., & Kumar, A. (2023). Association of cardiovascular events with COVID-19 vaccines using vaccine adverse event reporting system (VAERS): a retrospective study. Current Drug Safety (Epub ahead of print). https://doi.org/10.2174/0115748863276904231108095255

Anandamide. (2024a). Tracking DNA contamination in cell lines. Nepetalactone Newsletter. February 23, 2024. Accessed: August 9, 2024: https://anandamide.substack.com/p/ics5

Anandamide (2024b). Vaccine targeted qPCR of Cancer Cell Lines treated with BNT162b2. Accessed: April 10, 2024: https://anandamide.substack.com/p/vaccine-targeted-qpcr-of-cancer-cell

Andersson, M. I., Arancibia-Carcamo, C. V., Auckland, K., Baillie, J. K., Barnes, E., Beneke, T., Bibi, S., Brooks, T., Carroll, M., Crook, D., Dingle, K., Dold, C., Downs, L. O., Dunn, L., Eyre, D. W., Gilbert Jaramillo, J., Harvala, H., Hoosdally, S., Ijaz, S., James, T., James, W., Jeffery, K., Justice, A., Klenerman, P., Knight, J. C., Knight, M., Liu, X., Lumley, S. F., Matthews, P. C., McNaughton, A. L., Mentzer, A. J., Mongkolsapaya, J., Oakley, S., Oliveira, M. S., Peto, T., Ploeg, R. J., Ratcliff, J., Robbins, M. J., Roberts, D. J., Rudkin, J., Russell, R. A., Screaton, G., Semple, M. G., Skelly, D., Simmonds, P., Stoesser, N., Turtle, L., Wareing, S. & Zambon, M. (2020). SARS-CoV-2 RNA detected in blood products from patients with COVID-19 is not associated with infectious virus. Wellcome Open Research 5, 181. https://doi.org/10.12688/wellcomeopenres.16002.2

Angeli, F., Reboldi, G., Trapasso, M., Zappa, M., Spanevello, A., & Verdecchia, P. (2022). COVID-19, vaccines and deficiency of ACE2 and other angiotensinases. Closing the loop on the "Spike effect". European Journal of Internal Medicine, 103, 23-28. https://doi.org/10.1016/j.ejim.2022.06.015

Angues, V. R. & Bustos, P.Y. (2023). SARS-CoV-2 vaccination and the multi-hit hypothesis of oncogenesis. Cureus 15, e50703. https://doi.org/10.7759/cureus.50703

Appelbaum, J., Arnold, D. M., Kelton, J. G., Gernsheimer, T., Jevtic, S. D., Ivetic, N., Smith, J. W. & Nazy, I. (2022). SARS-CoV-2 spike-dependent platelet activation in COVID-19 vaccine-induced thrombocytopenia. Blood Advances 12, 6(7):2250-2253. https://doi.org/10.1182/bloodadvances.2021005050

Arand, A., Overholt, K., Jacob, S. A., & Belsky, J. A. (2023). Epstein-Barr Virus-positive hemophagocytic lymphohistiocytosis following COVID-19 vaccination in a pediatric patient. Pediatric Blood & Cancer 70(5), e30189. https://doi.org/10.1002/pbc.30189

Arjun, M. C., Singh, A. K., Pal, D., Das, K., G, A., Venkateshan, M., Mishra, B., Patro, B. K., Mohapatra, P. R., & Subba, S. H. (2022). Characteristics and predictors of Long COVID among diagnosed cases of COVID-19. PLoS One 20, 17(12):e0278825. https://doi.org/10.1371/journal.pone.0278825

Asano, N., Kato, S., & Nakamura, S. (2023). Epstein-Barr virus-associated natural killer/T-cell lymphomas. Best Practice & Research Clinical Haematology 26(1), 15-21. https://doi.org/10.1016/j.beha.2013.04.002

Ashman, R. B., Blanden, R. V., Ninham, B. W., & Evans, D. F. (1986). Interaction of amphiphilic aggregates with cells of the immune system. Immunology Today 7(9), 278-83. https://doi.org/10.1016/0167-5699(86)90010-1

Association of American Physicians and Surgeons (AAPS) (2024). AAPS statement calling for moratorium on COVID-19 shot mandates and genetic injections. January 31. https://aapsonline.org/aaps-statement-calling-for-moratorium-on-covid-19-injections-and-mandates/

Baden, L. R., El Sahly, H. M., Essink, B., Kotloff, K., Frey, S., Novak, R., Diemert, D., Spector, S. A., Rouphael, N., Creech, C. B., McGettigan, J., Khetan, S., Segall, N., Solis, J., Brosz, A., Fierro, C., Schwartz, H., Neuzil, K., Corey, L., Gilbert, P., Janes, H., Follmann, D., Marovich, M., Mascola, J., Polakowski, L., Ledgerwood, J., Graham, B. S., Bennett, H., Pajon, R., Knightly, C., Leav, B., Deng, W., Zhou, H., Han, S., Ivarsson, M., Miller, J., & Zaks, T.; COVE Study Group (2021). Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. New England Journal of Medicine 384(5), 403-416. https://doi.org/10.1056/NEJMoa2035389

Bae, E., Bae, S., Vaysblat, M., Abdelwahed, M., Sarkar, K. & Bae, S. (2023). Development of high-grade sarcoma after second dose of Moderna vaccine. Cureus 15(4), e37612. https://doi.org/10.7759/cureus.37612

Bakhit, M., Jones, M., Baker, J., Nair, R, Yan, K., Del Mar, C., Scott, A., M. (2021) Reporting of adverse events, conflict of interest and funding in randomised controlled trials of antibiotics: a secondary analysis. BMJ Open.11(7):e045406. https://doi.org/10.1136/bmjopen-2020-045406

Baletti, B. (2024). Florida surgeon general calls for halt in use of COVID modmRNA vaccines. Accessed: January 3, 2024: https://childrenshealthdefense.org/defender/florida-joseph-ladapo-halt-covid-mrna-vaccines/

Bansal, S., Perincheri, S., Fleming, T., Poulson, C., Tiffany, B., Bremner, R. M., Mohanakumar, T. (2021). Cutting edge: Circulating exosomes with COVID spike protein are induced by BNT162b2 (p fizer-BioNTech) vaccination prior to development of antibodies: A novel mechanism for immune activation by mRNA vaccines. Journal of Immunology 207(10), 2405-2410. https://doi.org/10.4049/jimmunol.2100637

Baral, S., Chandler, R., Prieto, R. G., Gupta, S., Mishra, S., & Kulldorff, M. (2021). Leveraging epidemiological principles to evaluate Sweden's COVID-19 response. Ann Epidemiol 54, 21-26. https://doi.org/10.1016/j.annepidem.2020.11.005

Barda, N., Dagan, N., Ben-Shlomo, Y., Kepten, E., Waxman, J., Ohana, R., Hernán, M. A., Lipsitch, M., Kohane, I., Netzer, D., Reis, B. Y., & Balicer, R. D. (2021). Safety of the BNT162b2 mRNA COVID-19 vaccine in a nationwide setting. New England Journal of Medicine 385(12), 1078-1090. https://doi.org/10.1056/NEJMoa2110475

Bardosh, K., Krug, A., Jamrozik, E., Lemmens, T., Keshavjee, S., Prasad, V., Makary, M. A., Baral, S., & Høeg, T. B. (2022). COVID-19 vaccine boosters for young adults: A risk benefit assessment and ethical analysis of mandate policies at universities. Journal of Medical Ethics. 50(2), 126-138. https://doi.org/10.1136/jme-2022-108449

Barmada, A., Klein, J., Ramaswamy, A., Brodsky, N. N., Jaycox, J. R., Sheikha, H., Jones, K. M., Habet, V., Campbell, M., Sumida, T. S., Kontorovich, A., Bogunovic, D., Oliveira, C. R., Steele, J., Hall, E. K., Pena-Hernandez, M., Monteiro, V., Lucas, C., Ring, A. M., Omer, S. B., Iwasaki, A., Yildirim, I., & Lucas, C. L. (2023). Cytokinopathy with aberrant cytotoxic lymphocytes and profibrotic myeloid response in SARS-CoV-2 modmRNA vaccine-associated myocarditis. Science Immunology 8(83), eadh3455. https://doi.org/10.1126/sciimmunol.adh3455

Barron, H., Hafizi, S., Andreazza, A. C., & Mizrahi, R. (2017). Neuroinflammation and oxidative stress in psychosis and psychosis risk. International Journal of Molecular Sciences 18(3) 651. https://doi.org/10.3390/ijms18030651

Baumeier, C., Aleshcheva, G., Harms, D., Gross, U., Hamm, C., Assmus, B., Westenfeld, R., Kelm, M., Rammos, S., Wenzel, P., Münzel, T., Elsässer, A., Gailani, M., Perings, C., Bourakkadi, A., Flesch, M., Kempf, T., Bauersachs, J., Escher, F., & Schultheiss, H. P. (2022). Intramyocardial Inflammation after COVID-19 Vaccination: An Endomyocardial Biopsy-Proven Case Series. International Journal of Molecular Sciences 23(13), 6940. https://doi.org/10.3390/ijms23136940

Beatty, A. L., Peyser, N.D., Butcher, X. E., Cocohoba, J. M., Lin, F., Olgin, J. E., Pletcher, M. J., & Marcus, G. M. (2021). Analysis of COVID-19 vaccine type and adverse effects following vaccination. JAMA Network Open 1, 4(12), e2140364. https://doi.org/10.1001/jamanetworkopen.2021.40364

Bellavite, P., Ferraresi, A., & Isidoro, C. (2023). Immune response and molecular systems of cardiovascular adverse effects of spike proteins from SARS-CoV-2 and modmRNA vaccines. Biomedicine 11, 451. https://doi.org/10.3390/biomedicines11020451

Benn, C.S., Schaltz-Buchholzer, F., Nielsen, S., Netea, M.G., & Aaby, P. (2023). Randomized clinical trials of COVID-19 vaccines: Do adenovirus-vector vaccines have beneficial non-specific effects? iScience 26(5), 106733. https://doi.org/10.1016/j.isci.2023.106733

Bhattacharya, J. & Kulldorff, M. (2023). We’re Fighting the COVID Censors Accessed: January 3, 2024: https://thespectator.com/topic/were-fighting-the-covid-censors-censorship/

Bigini, P., Gobbi, M., Bonati, M., Clavenna, A., Zucchetti, M., Garattini, S., & Pasut, G. (2021). The role and impact of polyethylene glycol on anaphylactic reactions to COVID-19 nano-vaccines. Nature Nanotechnology 16, 1169-71. https://doi.org/10.1038/s41565-021-01001-3

Bjørnstad-Tuveng, T. H., Rudjord, A. & Anker, P. (2021). Fatal cerebral haemorrhage after COVID-19 vaccine. Tidsskr Nor Laegeforen 141, 33928772. https://doi.org/10.4045/tidsskr.21.0312

Blaylock, R. L. (2022). COVID update: What is the truth?. Surgical Neurology International 13, 167. https://doi.org/10.25259/SNI_150_2022

Bossche, G.V. (2023) The inescapable immune escape pandemic. Pierucci Publishing, Aspen, CO. https://www.boswellbooks.com/book/9781956257809

Bozkurt, B. (2023). Shedding light on systems of myocarditis with COVID-19 modmRNA vaccines. Circulation 147, 877-80. https://doi.org/10.1161/CIRCULATIONAHA.123.063396

Brambilla, M., Canzano, P., Valle, P. D., Becchetti, A., Conti, M., Alberti, M., et al. (2023). Head-to-head comparison of four COVID-19 vaccines on platelet activation, coagulation and inflammation. The TREASURE study. Thrombosis Research 223, 24-33. https://doi.org/10.1016/j.thromres.2023.01.015

Brehm, E. A. (2021). FOIA Request. CEBR’s investigation procedures for individual VAERS reports (IR#0514). June 23. https://icandecide.org/wp-content/uploads/2023/03/IR0514-FDA-OBE-VAERS-follow-up-1.pdf

Brighton Collaboration (2020). Priority List of Adverse Events of Special Interest: COVID-19. Accessed: October 16, 2023: https://brightoncollaboration.org/priority-list-of-adverse-events-of-special-interest-covid-19/

Bril, F., Al Diffalha, S., Dean, M., & Fettig, D. M. (2021). Autoimmune hepatitis developing after coronavirus disease 2019 (COVID-19) vaccine: Causality or casualty? Journal of Hepatology 75(1), 222-224. https://doi.org/10.1016/j.jhep.2021.04.003

Brisotto, G., Montico, M., Turetta, M., Zanussi, S., Cozzi, M. R., Vettori, R., et al. (2023). Integration of cellular and humoral immune responses as an immunomonitoring tool for SARS-CoV-2 vaccination in healthy and fragile subjects. Viruses 15(6), 1276. https://doi.org/10.3390/v15061276

Brociek, E., Tymińska, A., Giordani, A. S., Caforio, A. L., Wojnicz, R., Grabowski, M., & Ozierański, K. (2023). Myocarditis: etiology, pathogenesis, and their implications in clinical practice. Biology (Basel) 12, 874. https://doi.org/10.3390/biology12060874

Brogna, C., Cristoni, S., Marino, G., Montano, L., Viduto, V., Fabrowski, M., Lettieri, G., & Piscopo, M. (2023). Detection of recombinant Spike protein in the blood of individuals vaccinated against SARS-CoV-2: Possible molecular systems. Proteomics – Clinical Applications 17(6), e2300048. https://doi.org/10.1002/prca.202300048

Bruce Yu, Y., Taraban, M. B., & Briggs, K. T. (2021). All vials are not the same: potential role of vaccine quality in vaccine adverse reactions. Vaccine 39, 6565-9. https://doi.org/10.1016/j.vaccine.2021.09.065

Buergin, N., Lopez-Ayala, P., Hirsiger, J. R., Mueller, P., Median, D., Glarner, N., Rumora, K., Herrmann, T., Koechlin, L., Haaf, P., Rentsch, K., Battegay, M., Banderet, F., Berger, C. T., & Mueller, C. (2023). Sex-specific differences in myocardial injury incidence after COVID-19 mRNA-1273 booster vaccination. European Journal of Heart Failure 25(10), 1871-1881. https://doi.org/10.1002/ejhf.2978

Burn, E., Li, X., Delmestri, A., Jones, N., Duarte-Salles, T., Reyes, C., Martinez-Hernandez, E., Marti, E., Verhamme, K. M. C., Rijnbeek, P. R., Strauss, V. Y., & Prieto-Alhambra, D. (2022). Thrombosis and thrombocytopenia after vaccination against and infection with SARS-CoV-2 in the United Kingdom. Nature Communications 13(1), 7167. https://doi.org/10.1038/s41467-022-34668-w

Butel, J. S., Vilchez, R. A., Jorgensen, J. L. & Kozinetz, C. A. (2003). Association between SV40 and non-Hodgkin's lymphoma. Leukemia & Lymphoma 44 (Suppl 3), S33-9. https://doi.org/10.1080/10428190310001623784

Cadegiani, F. A. (2022). Catecholamines are the key trigger of COVID-19 modmRNA vaccine-induced myocarditis: a compelling hypothesis supported by epidemiological, anatomopathological, molecular, and physiological findings. Cureus 14(8), e27883. https://doi.org/10.7759/cureus.27883

Çalık, Ş., Demir, İ., Uzeken, E., Tosun, S., Özkan Özdemir, H., Coşkuner, S. A., & Demir, S. (2022). Investigation of the relationship between the immune responses due to COVID-19 vaccine and peripheral bloodlymphocyte subtypes of healthcare workers [Article in Turkish]. Mikrobiyoloji Bülteni 56, 729-39. https://pubmed.ncbi.nlm.nih.gov/36458718/

Cao, C., Cai, Z., Xiao, X., Rao, J., Chen, J., Hu, N., Yang, M., Xing, X., Wang, Y., Li, M., Zhou, B., Wang, X., Wang, J., & Xue, Y. (2021). The architecture of the SARS-CoV-2 RNA genome inside virion. Nature Communications 12, 3917. https://doi.org/10.1038/s41467-021-22785-x

Cao, X., Li, Y., Zi, Y., & Zhu, Y. (2023). The shift of percent excess mortality from zero-COVID policy to living-with-COVID policy in Singapore, South Korea, Australia, New Zealand and Hong Kong SAR. Frontiers in Public Health 11, 1085451. https://doi.org/10.3389/fpubh.2023.1085451

Caron, P. (2022). Autoimmune and inflammatory thyroid diseases following vaccination with SARS-CoV-2 vaccines: from etiopathogenesis to clinical management. Endocrine 78(3), 406-417. https://doi.org/10.1007/s12020-022-03118-4

Caso, F., Costa, L., Ruscitti, P., Navarini, L., Del Puente, A., Giacomelli, R., & Scarpa, R. (2020). Could Sars-coronavirus-2 trigger autoimmune and/or autoinflammatory mechanisms in genetically predisposed subjects? Autoimmunity Reviews 19(5), 102524. https://doi.org/10.1016/j.autrev.2020.102524

Chapin-Bardales, J., Gee, J., & Myers, T. (2021). Reactogenicity following receipt of mRNA-based COVID-19 vaccines. JAMA 325, 2201-2. https://doi.org/10.1001/jama.2021.5374

Chapin-Bardales, J., Myers, T., Gee, J., Shay, D. K., Marquez, P., Baggs, J., Zhang, B., Licata, C., & Shimabukuro, T. T. (2021b). Reactogenicity within 2 weeks after mRNA COVID-19 vaccines: Findings from the CDC v-safe surveillance system. Vaccine 39(48), 7066-7073. https://doi.org/10.1016/j.vaccine.2021.10.019

Chatterjee, A. & Chakravarty, A. (2023). Neurological complications following COVID-19 vaccination. Current Neurology and Neuroscience Reports 23(1), 1-14. https://doi.org/10.1007/s11910-022-01247-x

Chatterjee, S., Nalla, L. V., Sharma, M., Sharma, N., Singh, A. A., Malim, F. M., Ghatage, M., Mukarram, M., Pawar, A., Parihar, N., Arya, N., & Khairnar, A. (2023). Association of COVID-19 with Comorbidities: An Update. ACS Pharmacology & Translational Science Journal 6(3), 334-354. https://doi.org/10.1021/acsptsci.2c00181

Chen, J., Wu, T., Zhang, C., Zhang, Y., Liu, Z. & Wang, Y. (2023). Clinically suspected lethal viral myocarditis combined with encephalitis: a COVID-19 vaccine complication. ESC Heart Failure 10, 1422–5. https://doi.org/10.1002/ehf2.14229

Chen, Y., Xu, Z., Wang, P., Li, X. M., Shuai, Z. W., Ye, D. Q. & Pan, H. F. (2022). New-onset autoimmune phenomena post-COVID-19 vaccination. Immunology 165(4), 386-401. https://doi.org/10.1111/imm.13443

Cheng H, Peng Z, Luo W, Si S, Mo M, Zhou H, Xin X, Liu H, Yu Y. Efficacy and Safety of COVID-19 Vaccines in Phase III Trials: A Meta-Analysis. Vaccines (Basel) 2021;9(6):582. https://doi.org/10.3390/vaccines9060582

Chevaisrakul, P., Lumjiaktase, P., Kietdumrongwong, P., Chuatrisorn, I., Chatsangjaroen, P., & Phanuphak, N. (2023). Hybrid and herd immunity 6 months after SARS-CoV-2 exposure among individuals from a community treatment program. Scientific Reports 13(1), 763. https://doi.org/10.1038/s41598-023-28101-5

Chiu, S. N., Chen, Y. S., Hsu, C. C., Hua, Y. C., Tseng, W. C., Lu, C. W., Lin, M. T., Chen, C. A., Wu, M. H., Chen, Y. T., Chien, T. H., Tseng, C. L. & Wang, J. K. (2023). Changes of ECG parameters after BNT162b2 vaccine in the senior high school students. European Journal of Pediatrics 182(3), 1155-1162. https://doi.org/10.1007/s00431-022-04786-0

Choi, J.-K., Kim, S., Kim, S. R., Jin, J. Y., Choi, S. W., Kim, H., Yoo, J. H., Park, I. S. & Kim, S. R. (2021). Intracerebral hemorrhage due to thrombosis with thrombocytopenia syndrome after vaccination against COVID-19: the first fatal case in Korea. Journal of Korean Medical Science 36(31), 3223. https://doi.org/10.3346/jkms.2021.36.e223

Chow, K. W., Pham, N. V., Ibrahim, B. M., Hong, K., & Saab, S. (2022). Autoimmune hepatitis-like syndrome following COVID-19 vaccination: A systematic review of the literature. Digestive Diseases and Sciences 67(9), 4574-4580. https://doi.org/10.1007/s10620-022-07504-w

Ciapponi, A., Berrueta, M., Argento, F. J., Ballivian, J., Bardach, A., Brizuela, M. E., Castellana, N., Comandé, D., Gottlieb, S., Kampmann, B., Mazzoni, A., Parker, E. P. K., Sambade, J. M., Stegelmann, K., Xiong, X., Stergachis, A., & Buekens, P. (2024). Safety and effectiveness of COVID-19 vaccines during pregnancy: A living systematic review and meta-analysis. Drug Safety 2024 Jul 15. https://doi.org/10.1007/s40264-024-01458-w

Cines, D. B. & Greinacher, A. (2023). Vaccine-induced immune thrombotic thrombocytopenia. Blood. 141(14), 1659-1665. https://doi.org/10.1182/blood.2022017696Classen, B. (2021). US COVID-19 vaccines proven to cause more harm than good based on pivotal clinical trial data analyzed using the proper scientific endpoint, “all cause severe morbidity”. Trends in Internal Medicine 1, 1-6. (pdf)

Classen, B. (2021). US COVID-19 vaccines proven to cause more harm than good based on pivotal clinical trial data analyzed using the proper scientific endpoint, “all cause severe morbidity”. Trends in Internal Medicine 1, 1-6. (pdf)

Cocco, N., Leibundgut, G., Pelliccia, F., Cammalleri, V., Nusca, A., Mangiacapra, F., Cocco, G., Fanale, V., Ussia, G. P., & Grigioni, F. (2023). Arrhythmias after COVID-19 Vaccination: Have We Left All Stones Unturned? International Journal of Molecular Sciences 24(12), 10405. https://doi.org/10.3390/ijms241210405

Collier, J. L., Weiss, S. A., Pauken, K. E., Sen, D. R., & Sharpe, A. H. (2021). Not-so-opposite ends of the spectrum: CD8+ T cell dysfunction across chronic infection, cancer and autoimmunity. Nature Immunology 22(7), 809-819. https://doi.org/10.1038/s41590-021-00949-7

COPE: Committee on Publication Ethics (2024). Guidelines. Accessed: August 9, 2024: https://publicationethics.org/guidance/Guidelines

Cosentino, M. & Marino, F. (2022a). The spike hypothesis in vaccine-induced adverse effects: questions and answers. Trends in Molecular Medicine 28(10), 797-799. https://doi.org/10.1016/j.molmed.2022.07.009

Cosentino, M. & Marino, F. (2022b). Understanding the pharmacology of COVID-19 modmRNA vaccines: playing dice with the spike? International Journal of Molecular Sciences 23, 10881. https://doi.org/10.3390/ijms231810881

Cottrell, S. COVID-19 Vaccine Officially on Childhood Immunization Schedule. Parents. November 17, 2023. https://www.parents.com/cdc-adds-covid-19-vaccine-to-immunization-schedule-7107594

COVID-19 Vaccine Surveillance Report. (2022). Week 10. UK Health Security Agency. https://assets.publishing.service.gov.uk/media/623087498fa8f56c23967166/Vaccine_surveillance_report_-_week_10.pdf

Craddock, V., Mahajan, A., Spikes, L., Krishnamachary, B., Ram, A. K., Kumar, A., Chen, L., Chalise, P., & Dhillon, N. K. (2023). Persistent circulation of soluble and extracellular vesicle-linked Spike protein in individuals with postacute sequelae of COVID-19. Journal of Medical Virology 95(2), e28568. https://doi.org/10.1002/jmv.28568

Crowder, S., & O’Looney, J. (2022, November 2). Exclusive: Undertaker explains “mysterious” clotting phenomenon! Louder with Crowder. https://rumble.com/v1r2ts2--live-daily-show-louder-with-crowder.html Cui, S., Wang, Y., Gong, Y., Lin, X., Zhao, Y., Zhi, D., Zhou, Q., & Zhang, S. (2018). Correlation of the cytotoxic effects of cationic lipids with their headgroups. Toxicology Research (Cambridge) 7(3), 473-479. https://doi.org/10.1039/c8tx00005k

Cui, S., Wang, Y., Gong, Y., Lin, X., Zhao, Y., Zhi, D., Zhou, Q., & Zhang, S. (2018). Correlation of the cytotoxic effects of cationic lipids with their headgroups. Toxicology Research 7(3),473-479. https://doi.org/10.1039/c8tx00005k

Dag Berild, J., Bergstad Larsen, V., Myrup Thiesson, E., Lehtonen, T, Grøsland, M., Helgeland, J., Wolhlfahrt, J., Vinsløv Hansen, J., Palmu, A. A., & Hviid, A. (2022). Analysis of thromboembolic and thrombocytopenic events after the AZD1222, BNT162b2, and MRNA-1273 COVID-19 vaccines in 3 Nordic countries. JAMA Network Open 5(6), e2217375. https://doi.org/10.1001/jamanetworkopen.2022.17375

Davis, H E., McCorkell, L, Vogel, J. M., & Topol, E.J. (2023). Long COVID: major findings, systems and recommendations. Nat Rev Microbiol 21, 133-46. https://doi.org/10.1038/s41579-022-00846-2

de Buhr, N., Baumann, T., Werlein, C., Fingerhut, L., Imker, R., Meurer, M., Götz, F., Bronzlik, P., Kühnel, M. P., Jonigk, D. D., Ernst, J., Leotescu, A., Gabriel, M. M., Worthmann, H., Lichtinghagen, R., Tiede, A., von Köckritz-Blickwede, M., Falk, C. S., Weissenborn, K., Schuppner, R., & Grosse, G. M. (2022). Insights into immunothrombotic systems in acute stroke due to vaccine-induced immune thrombotic thrombocytopenia. Frontiers in Immunology 13, 879157. https://doi.org/10.3389/fimmu.2022.879157

De Michele, M., d'Amati, G., Leopizzi, M., Iacobucci, M., Berto, I., Lorenzano, S., Mazzuti, L., Turriziani, O., Schiavo, O. G., & Toni, D. (2022). Evidence of SARS-CoV-2 spike protein on retrieved thrombi from COVID-19 patients. Journal of Hematology & Oncology 15(1), 108. https://doi.org/10.1186/s13045-022-01329-w

Debes, A. K., Xiao, S., Colantuoni, E., Egbert, E. R., Caturegli, P., Gadala, A., Milstone, A. M. (2021). Association of vaccine type and prior SARS-CoV-2 infection with symptoms and antibody measurements following vaccination among health care workers. JAMA Internal Medicine 181, 1660–1662. https://doi.org/10.1001/jamainternmed.2021.4580

Devaux, C. A. & Camoin-Jau, L. (2023). Molecular mimicry of the viral spike in the SARS-CoV-2 vaccine possibly triggers transient dysregulation of ACE2, leading to vascular and coagulation dysfunction similar to SARS-CoV-2 infection. Viruses 15(5), 1045. https://doi.org/10.3390/v15051045

Dey, M., Doskaliuk, B., Lindblom, J., Nikiphorou, E., Wincup, C., Fathima, M., Saha, S., Shaharir, S. S., Katchamart, W., Goo, P. A., Traboco, L., Chen, Y. M., Kadam, E., Lilleker, J. B., Nune, A., Pauling, J. D., Agarwal, V., Dey, D., Toro Gutierrez, C. E., Caballero, C. V., Chinoy, H., Covad Study Group, Aggarwal. R., Agarwal. V., Gupta. L., & Parodis, I. (2023). COVID-19 vaccination-related delayed adverse events among patients with systemic lupus erythematosus. Journal of Clinical Medicine 12(24), 7542. https://doi.org/10.3390/jcm12247542

Dhama, K., Nainu, F., Frediansyah, A., Yatoo, M. I., Mohapatra, R. K., Chakraborty, S., et al. (2023). Global emerging Omicron variant of SARS-CoV-2: Impacts, challenges and strategies. Journal of Infection and Public Health 16(1), 4-14. https://doi.org/10.1016/j.jiph.2022.11.024

Dhuli, K., Medori, M. C., Micheletti, C., Donato, K., Fioretti, F., Calzoni, A., Praderio, A., De Angelis, M. G., Arabia, G., Cristoni, S., Nodari, S., & Bertelli, M. (2023). Presence of viral spike protein and vaccinal spike protein in the blood serum of patients with long-COVID syndrome. European Review for Medical and Pharmacological Sciences 27(6 Suppl), 13-19. https://doi.org/10.26355/eurrev_202312_34685

Di Gioacchino, M., Petrarca, C., Lazzarin, F., Di Giampaolo, L., Sabbioni, E., Boscolo, P., Mariani-Costantini, R. & Bernardini, G. (2011). Immunotoxicity of nanoparticles. International Journal of Immunopathology and Pharmacology 24(1 Suppl), 65S-71S. https://pubmed.ncbi.nlm.nih.gov/21329568/

Diexer, S., Klee, B., Gottschick, C., Xu, C., Broda, A., Purschke, O., Binder, M., Frese, T., Girndt, M., Hoell, J. I., Moor, I., Gekle, M., & Mikolajczyk, R. (2023). Association between virus variants, vaccination, previous infections, and post-COVID-19 risk. International Journal of Infectious Diseases 136, 14-21. https://doi.org/10.1016/j.ijid.2023.08.019

Doctors for COVID Ethics. (2021). Urgent Open Letter from Doctors and Scientists to the European Medicines Agency regarding COVID-19 Vaccine Safety Concerns. March 10. Accessed: August 14,2024: https://doctors4covidethics.org/urgent-open-letter-from-doctors-and-scientists-to-the-european-medicines-agency-regarding-covid-19-vaccine-safety-concerns/

Dolina, J. S., Van Braeckel-Budimir, N., Thomas, G. D., & Salek-Ardakani, S. (2021). CD8+ T cell exhaustion in cancer. Frontiers in Immunology 12, 715234. https://doi.org/10.3389/fimmu.2021.715234

Domazet-Lošo, T. (2022). mRNA Vaccines: Why Is the Biology of Retroposition Ignored? Genes (Basel). 13(5), 719. https://doi.org/10.3390/genes13050719

Domerecka, W., Kowalska-Kępczyńska, A., Michalak, A., Homa-Mlak, I., Mlak, R., Cichoż-Lach, H., & Małecka-Massalska, T. (2021). Etiopathogenesis and diagnostic strategies in autoimmune hepatitis. Diagnostics (Basel) 11(8), 1418. https://doi.org/10.3390/diagnostics11081418

Doshi, P. (2020). Will COVID-19 vaccines save lives? Current trials aren't designed to tell us. BMJ 371, m4037. https://doi.org/10.1136/bmj.m4037

Duffy, K., Arangundy-Franklin, S., & Holliger, P. (2020). Modified nucleic acids: Replication, evolution, and next- generation therapeutics. BMC Biology 18(1), 112. https://doi.org/10.1186/s12915-020-00803-6

Dumais J. Watch: International ‘Hope Accord’ Calls for Immediate Suspension of COVID mRNA Vaccines. The Defender. July 10, 2024. https://childrenshealthdefense.org/defender/hope-accord-suspension-covid-vaccines-john-campbell/

Echaide, M., Chocarro de Erauso, L., Bocanegra, A., Blanco, E., Kochan, G., & Escors, D. (2023). modmRNA vaccines against SARS- CoV- 2: advantages and caveats. International Journal of Molecular Sciences 24, 5944. https://doi.org/10.3390/ijms24065944

Echaide, M., Labiano, I., Delgado, M., Fernández de Lascoiti, A., Ochoa, P., Garnica, M., Ramos, P., Chocarro, L., Fernández, L., Arasanz, H., Bocanegra, A., Blanco, E., Piñeiro-Hermida, S., Morente, P., Vera, R., Alsina, M., Escors, D., & Kochan, G. (2022). Immune Profiling Uncovers Memory T-Cell Responses with a Th17 Signature in Cancer Patients with Previous SARS-CoV-2 Infection Followed by modmRNA vaccination. Cancers (Basel) 14(18), 4464. https://doi.org/10.3390/cancers14184464

Elfil, M. Aladawi, M., Balian, D., Fahad, I., Zhou, D. J., Villafuerte-Trisolini, B., & Diesing, T. S. (2023). Cerebral venous sinus thrombosis after COVID-19 vaccination: a case report and literature review. Oxford Medical Case Reports 2023(1), omac154. https://doi.org/10.1093/omcr/omac154

ElSawi, H. A., & Elborollosy, A. (2022). Immune-mediated adverse events post-COVID vaccination and types of vaccines: a systematic review and meta-analysis. The Egyptian Journal of Internal Medicine 34(1), 44. https://doi.org/10.1186/s43162-022-00129-5

Eslait-Olaciregui, S., Llinás-Caballero, K., Patiño-Manjarrés, D., Urbina-Ariza, T., Cediel-Becerra, J. F., & Domínguez-Domínguez, C. A. (2023). Serious neurological adverse events following immunization against SARS-CoV-2: a narrative review of the literature. Therapeutic Advances in Drug Safety 14, 20420986231165674. https://doi.org/10.1177/20420986231165674

Elsevier (2024). Article Correction, Retraction and Removal Policy. Accessed: August 9, 2024: https://www.elsevier.com/about/policies-and-standards/article-withdrawal

España, P. P., Bilbao, A., García-Gutiérrez, S., Lafuente, I., Anton-Ladislao, A., Villanueva, A., Uranga, A., Legarreta, M. J., Aguirre, U., Quintana, J. M.; COVID-19-Osakidetza Working group. (2021). Predictors of mortality of COVID-19 in the general population and nursing homes. Internal and Emergency Medicine 16(6), 1487-1496. https://doi.org/10.1007/s11739-020-02594-8

Espino, A. M., Armina-Rodriguez, A., Alvarez, L., Ocasio-Malavé, C., Ramos-Nieves, R., Rodriguez Martinó, E. I., López-Marte, P., Torres, E A., & Sariol, C. A. (2024). The anti-SARS-CoV-2 IgG1 and IgG3 antibody isotypes with limited neutralizing capacity against Omicron elicited in a Latin population a switch toward IgG4 after multiple doses with the mRNA Pfizer-BioNTech vaccine. Viruses 16(2), 187. https://doi.org/10.3390/v16020187

European Medicines Agency (2020). Comirnaty. Accessed: December 20, 2023: https://www.ema.europa.eu/en/medicines/human/EPAR/comirnaty

European Medicines Agency (2021a). Assessment Report COVID-19 Vaccine Moderna. Amsterdam, The Netherlands. https://www.ema.europa.eu/en/medicines/human/EPAR/spikevax-previously-covid-19-vaccine-moderna

European Medicines Agency (2021b). Assessment Report: Comirnaty. Amsterdam, The Netherlands. https://www.ema.europa.eu/en/documents/assessment-report/comirnaty-epar-public-assessment- report_en.pdf

European Medicines Agency (2024). Science medicines health. human regulatory. Eudravigilance. n.d. Available: https://www.ema.europa.eu/en/human-regulatory-overview/research-development/pharmacovigilance-research-development/eudravigilance

Eythorsson, E., Runolfsdottir, H. L., Ingvarsson, R. F., Sigurdsson, M. I. & Palsson, R. (2022). Rate of SARS-CoV-2 reinfection during an omicron wave in Iceland. JAMA Network Open 5(8), e2225320. https://doi.org/10.1001/jamanetworkopen.2022.25320

Faksova, K., Walsh, D., Jiang, Y., Griffin, J., Phillips, A., Gentile, A., Kwong, J. C., Macartney, K., Naus, M., Grange, Z., Escolano, S., Sepulveda, G., Shetty, A., Pillsbury, A., Sullivan, C., Naveed, Z., Janjua, N. Z., Giglio, N., Perälä, J., Nasreen, S., Gidding, H., Hovi, P., Vo, T., Cui, F., Deng, L., Cullen, L., Artama, M., Lu, H., Clothier, H. J., Batty, K., Paynter, J., Petousis-Harris, H., Buttery, J., Black, S. & Hviid, A. (2024). COVID-19 vaccines and adverse events of special interest: A multinational Global Vaccine Data Network (GVDN) cohort study of 99 million vaccinated individuals. Vaccine 42(9), 2200-2211. https://doi.org/10.1016/j.vaccine.2024.01.100

Fan YJ, Chan KH, Hung IF. (2021). Safety and Efficacy of COVID-19 Vaccines: A Systematic Review and Meta-Analysis of Different Vaccines at Phase 3. Vaccines (Basel). 9(9):989. https://www.mdpi.com/2076-393X/9/9/989

Fazlollahi, A., Zahmatyar, M., Shamekh, A., Motamedi, A., Seyedi, F., Seyedmirzaei, H., Mousavi, S. E., Nejadghaderi, S. A., Sullman, M. J. M., Kolahi, A. A., Arshi, S. & Safiri, S. (2023). Electroencephalographic findings post-COVID-19 vaccination: A systematic review of case reports and case series. Reviews in Medical Virology 33(6), e2484. https://doi.org/10.1002/rmv.2484

Fell, D. B., Dimanlig-Cruz, S., Regan, A. K., Håberg, S. E., Gravel, C. A., Oakley, L., Alton, G. D., Török, E., Dhinsa, T., Shah, P. S., Wilson, K., Sprague, A. E., El-Chaâr, D., Walker, M. C., Barrett, J., Okun, N., Buchan, S. A., Kwong, J. C., Wilson, S. E., & Dunn, S. I. (2022). MacDonald SE, Dougan SD. Risk of preterm birth, small for gestational age at birth, and stillbirth after covid-19 vaccination during pregnancy: population based retrospective cohort study. BMJ 378, e071416. https://doi.org/10.1136/bmj-2022-071416

Finley, A. (2023). How ‘preapproved narratives’ corrupt science. WSJ Opinion. Accessed: April 10, 2024: https://www.wsj.com/articles/how-preapproved-narratives-corrupt-science-false-studies-covid-climate-change-5bee0844

Finsterer, J. (2022). Neurological adverse reactions to SARS-CoV-2 vaccines. Clin Psychopharmacol Neurosci. 2023;21(2):222-239. https://doi.org/10.9758/cpn.2023.21.2.222Garg RK, Paliwal VK. Spectrum of neurological complications following COVID-19 vaccination. Neurological Sciences 43(1), 3-40. https://doi.org/10.1007/s10072-021-05662-9

Finsterer, J. (2023). Neurological adverse reactions to SARS-CoV-2 vaccines. Clinical Psychopharmacology and Neuroscience. 21(2), 222-239. https://doi.org/10.9758/cpn.2023.21.2.222

Fleming, D. R. M. (2021). Is COVID-19 a Bioweapon? A Scientific and Forensic Investigation. Skyhorse. https://www.simonandschuster.com/books/Is-COVID-19-a-Bioweapon/Richard-M-Fleming/Children-s-Health-Defense/9781510770195

Fraiman, J., Erviti, J., Jones, M., Greenland, S., Whelan, P., Kaplan, R. M., & Doshi, P. (2022). Serious adverse events of special interest following mRNA COVID-19 vaccination in randomized trials in adults. Vaccine 40, 5798–5805. https://doi.org/10.1016/j.vaccine.2022.08.036

Francis, A. G., Elhadd, K., Camera, V., Ferreira Dos Santos, M., Rocchi, C., Adib-Samii, P., Athwal, B., Attfield, K., Barritt, A., Craner, M., Fisniku, L., Iversen, A. K. N., Leach, O., Matthews, L., Redmond, I., O'Riordan, J., Scalfari, A., Tanasescu, R., Wren, D., Huda, S., Leite, M. I., Fugger, L. & Palace, J. (2022). Acute inflammatory diseases of the central nervous system after SARS-CoV-2 vaccination. Neurology, Neuroimmunology & Neuroinflammation 10(1), e200063. https://doi.org/10.1212/NXI.0000000000200063

Frost, B. & Diamond, M. I. (2010). Prion-like mechanisms in neurodegenerative diseases. Nature Reviews Neuroscience 11(3), 155-9. https://doi.org/10.1038/nrn2786

Fung, K., Jones, M., & Doshi, P. (2024). Sources of bias in observational studies of COVID-19 vaccine effectiveness. Journal of Evaluation in Clinical Practice 30(1), 30-36. https://doi.org/10.1111/jep.13839

Gandolfo, C., Anichini, G., Mugnaini, M., Bocchia, M., Terrosi, C., Sicuranza, A., Gori Savellini, G., Gozzetti, A., Franchi, F., & Cusi, M. G. (2022). Overview of Anti-SARS-CoV-2 Immune Response Six Months after BNT162b2 modmRNA vaccine. Vaccines (Basel) 10(2), 171. https://doi.org/10.3390/vaccines10020171

Gao, J., Feng, L., Li, Y., Lowe, S., Guo, Z., Bentley, R., Xie, C., Wu, B., Xie, P., Xia, W., Ma, S., Liu, H., Guo, X., Uy, J. P. N., Zhou, Q., Wazir, H., & Sun, C. A. (2023). Systematic review and meta-analysis of the association between SARS-CoV-2 vaccination and myocarditis or pericarditis. American Journal of Preventive Medicine 64(2), 275-284. https://doi.org/10.1016/j.amepre.2022.09.002

Garabet, L., Eriksson, A., Tjønnfjord, E., Cui, X. Y., Olsen, M. K., Jacobsen, H. K., Jørgensen, C. T., Mathisen, Å. B., Mowinckel, M. C., Ahlen, M. T., Sørvoll, I. H., Horvei, K. D., Ernstsen, S. L., Lægreid, I. J., Stavik, B., Holst, R., Sandset, P. M., & Ghanima, W. (2023). SARS-CoV-2 vaccines are not associated with hypercoagulability in apparently healthy people. Research and Practice in Thrombosis and Haemostasis 7(1), 100002. https://doi.org/10.1016/j.rpth.2022.100002

Garg, R. K. & Paliwal, V. K. (2022). Spectrum of neurological complications following COVID-19 vaccination. Neurological Sciences 43(1), 3-40. https://doi.org/10.1007/s10072-021-05662-9

Gazit, S., Shlezinger, R., Perez, G., Lotan, R., Peretz, A., Ben-Tov, A., Herzel, E., Alapi, H., Cohen, D., Muhsen, K., Chodick, G., & Patalon, T. (2022). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) naturally acquired immunity versus vaccine-induced immunity, Reinfections versus breakthrough infections: A retrospective cohort study. Clinical Infectious Diseases 75(1), e545-e551. https://doi.org/10.1093/cid/ciac262

Ghaderi, S., Mohammadi, S., Heidari, M., Sharif Jalali, S. S. & Mohammadi, M. (2023). Post-COVID-19 vaccination CNS magnetic resonance imaging findings: A systematic review. Canadian Journal of Infectious Diseases and Medical Microbiology 2023, 1570830. https://doi.org/10.1155/2023/1570830

Giannotta, G., Murrone, A., & Giannotta, N. (2023). COVID-19 modmRNA vaccines: the molecular basis of some adverse events. Vaccines (Basel) 11, 747. https://doi.org/10.3390/vaccines11040747

Gibo, M., Kojima, S., Fujisawa, A., Takayuki Kikuchi, T., & Fukushima, M. (2024). Increased age-adjusted cancer mortality after the third mRNA-lipid nanoparticle vaccine dose during the COVID-19 pandemic in Japan. Cureus 16(4): e57860. https://doi.org/10.7759/cureus.57860

Glover, C., Deng, L., Larter, C., Brogan, C., Richardson, O., Huang, Y. A., Kay, E., Macartney, K. & Wood, N. (2021). Surveillance of adverse events following immunisation in Australia, COVID-19 vaccines. Communicable Diseases Intelligence 48, 3-34. https://doi.org/10.33321/cdi.2024.48.2

Goldman, S., Bron. D., Tousseyn, T., & Vierasu, I, (2021). Dewispelaere L, Heimann P, Cogan E, Goldman M. Rapid Progression of Angioimmunoblastic T Cell Lymphoma Following BNT162b2 modmRNA vaccine Booster Shot: A Case Report. Front Med (Lausanne) 8:798095. https://doi.org/10.3389/fmed.2021.798095

González-Reyes, R. E., Nava-Mesa, M. O., Vargas-Sánchez, K., Ariza-Salamanca, D., & Mora-Muñoz, L. (2017). Involvement of astrocytes in Alzheimer's disease from a neuroinflammatory and oxidative stress perspective. Frontiers in Molecular Neuroscience 10, 427. https://doi.org/10.3389/fnmol.2017.00427

Gøtzsche, P. C. & Demasi, M. (2022). Serious harms of the COVID-19 vaccines: a systematic review. medRxiv Preprint. https://doi.org/10.1101/2022.12.06.22283145

Graña C, Ghosn L, Evrenoglou T, Jarde A, Minozzi S, Bergman H, et al. Efficacy and safety of COVID-19 vaccines. Cochrane Database Systematic Reviews. 2022;12(12):CD015477. https://doi.org/10.1002/14651858.CD015477

Greinacher A., & T.E., Warkentin (2023). Thrombotic anti-PF4 immune disorders: HIT, VITT, and beyond. Hematology/the Education Program of the American Society of Hematology 2023(1):1-10. https://doi.org/10.1182/hematology.2023000503

Greinacher, A., Schönborn, L., Siegerist, F., Steil, L., Palankar, R., Handtke, S., Reder, A., Thiele, T., Aurich, K., Methling, K., Lalk, M., Völker, U., & Endlich, N. (2022). Pathogenesis of vaccine-induced immune thrombotic thrombocytopenia (VITT). Seminars in Hematology 59(2), 97-107. https://doi.org/10.1053/j.seminhematol.2022.02.004

Grobbelaar, L. M., Venter, C., Vlok, M., Ngoepe, M., Laubscher, G. J., Lourens, P. J., Steenkamp, J., Kell, D. B., & Pretorius, E. (2021). SARS-CoV-2 spike protein S1 induces fibrin(ogen) resistant to fibrinolysis: implications for microclot formation in COVID-19. Bioscience Reports 41(8), BSR20210611. https://doi.org/10.1042/BSR20210611

Groelly, F.J., Fawkes, M., Dagg, R.A., Blackford, A.N., Tarsounas, M. Targeting DNA damage response pathways in cancer. Nature Reviews, Cancer. 2023 Feb;23(2):78-94. https://doi.org/10.1038/s41568-022-00535-5

Gryder, B., Nelson, C., & Shepard, S. (2013). Biosemiotic entropy of the genome: Mutations and epigenetic imbalances resulting in cancer. Entropy 15(1), 234–261. https://doi.org/10.3390/e15010234

Gutschi, M. (Director). (2022). Quality issues with mRNA COVID vaccine production. November 2. https://www.bitchute.com/video/muB0nrznCAC4/

Haas JW, Bender FL, Ballou S, Kelley JM, Wilhelm M, Miller FG, Rief W, Kaptchuk TJ. Frequency of Adverse Events in the Placebo Arms of COVID-19 Vaccine Trials: A Systematic Review and Meta-analysis. JAMA Network Open 2022;5(1):e2143955. https://doi.org/10.1001/jamanetworkopen.2021.43955

Halma, M. T. J., Rose. J., & Lawrie, T. (2023). The novelty of mRNA viral vaccines and potential harms: a scoping review. J 6, 220-35. https://doi.org/10.3390/j6020017

Hamed, Y., Shokry, A. E., Shehata, K. M. A., Osman, S. M., Saad, K., Sawy, S. S., Abdelrazzak, E., Abdelmola, O. M. & Mansour, T. (2024). CNS demyelination syndromes following COVID-19 vaccination: A case series. Journal of Pharmacy and Bioallied Sciences 16(Suppl 1), S1002-S1006. https://doi.org/10.4103/jpbs.jpbs_1084_23

Hanahan, D. (2022) Hallmarks of Cancer: New Dimensions. Cancer Discovery. 12(1):31-46. https://doi.org/10.1158/2159-8290.CD-21-1059

Harris SD. Embalmers, Clots, and a Real-Life Terror Tale. The Epoch Times. 2/24/2024. https://www.theepochtimes.com/opinion/embalmers-clots-and-a-real-life-terror-tale-5587148

Hatchard, G. (2022). NZ Ministry of Health Data Shows Triple Vaccinated are Now More Vulnerable to COVID Infection and Hospitalisation than the Unvaccinated. Daily Exposé. https://expose-news.com/2022/04/06/nz-moh-data-triple-vaccinated-most-vulnerable-covid/

Heinz, F. X. & Stiasny, K. (2021). Distinguishing features of current COVID-19 vaccines: knowns and unknowns of antigen presentation and modes of action. NPJ Vaccines 6, 104. https://doi.org/10.1038/s41541-021-00369-6

Herbein, G. (2022a). High-risk oncogenic human cytomegalovirus. Viruses 14(11), 2462. https://doi.org/10.3390/v14112462

Herbein, G. (2022b). Tumors and cytomegalovirus: An intimate interplay. Viruses 14(4), 812. https://doi.org/10.3390/v14040812

Herzum, A., Trave, I., D'Agostino, F., Burlando, M., Cozzani, E., & Parodi, A. (2022). Epstein-Barr virus reactivation after COVID-19 vaccination in a young immunocompetent man: a case report. Clinical and Experimental Vaccine Research 11(2), 222-225. https://doi.org/10.7774/cevr.2022.11.2.222

Ho, L. L. Y., Schiess G. H. A., Miranda P., Weber G., & Astakhova K. (2024) Pseudouridine and N1-methylpseudouridine as potent nucleotide analogues for RNA therapy and vaccine development. RSC Chemical Biology 5(5), 418-425. https://doi.org/10.1039/D4CB00022F

Hobayan, C. G. & Chung, C. G. (2023). Indolent cutaneous lymphoma with gamma/delta expression after COVID-19 vaccination. JAAD Case Reports 32, 74-76. https://doi.org/10.1016/j.jdcr.2022.12.001

Horowitz, D. (2023). Confidential Pfizer document shows the company observed 1.6 million adverse events covering nearly every organ system. Accessed: October 16, 2023: https://www.conservativereview.com/horowitz-confidential-pfizer-document-shows-the-company-observed-1-6-million-adverse-events-covering-nearly-every-organ-system-2661316948.html

Horwood M. (2023). EXCLUSIVE: Embalmers Speak Out on Unusual Blood Clots. The Epoch Times. 9/30/2023. https://www.theepochtimes.com/world/exclusive-embalmers-speak-out-on-unusual-parasite-blood-clots-5121795

Hossaini S, Keramat F, Cheraghi Z, Zareie B, Doosti-Irani A. Comparing the Efficacy and Adverse Events of Available COVID-19 Vaccines Through Randomized Controlled Trials: Updated Systematic Review and Network Meta-analysis. Journal of Research in Health Science 2023;23(4):e00593. https://doi.org/10.34172/jrhs.2023.128

Hou, X., Zaks, T., Langer, R., & Dong, Y. (2021). Lipid nanoparticles for mRNA delivery. Nature Reviews Materials 6, 1078-94. https://doi.org/10.1038/s41578-021-00358-0

Hulscher, N., Alexander, P. E., Amerling, R., Gessling, H., Hodkinson, R., Makis, W., Risch, H. A., Trozzi, M., & McCullough, P. A. (2023). A systematic review of autopsy findings in deaths after COVID-19 vaccination. SSRN. https://doi.org/10.2139/ssrn.4496137

Hulscher, N., Alexander, P. E., Amerling, R., Gessling, H., Hodkinson, R., Makis, W., Risch, H. A., Trozzi, M., & McCullough, P. A. (2024a). Withdrawn: A systematic review of autopsy findings in deaths after COVID-19 vaccination. Forensic Science International, 112115. https://doi.org/10.1016/j.forsciint.2024.112115

Hulscher, N., Hodkinson, R., Makis, W., & McCullough, P. A. (2024b). Autopsy findings in cases of fatal COVID-19 vaccine-induced myocarditis. ESC Heart Failure 1-14. https://doi.org/10.1002/ehf2.14680

Hurley, P., Krohn, M., LaSala, T., Leavitt, R., MacDonald, C. S., Nolan, P., Rulis, S., & Sawyer, M. (2023). Group Life COVID-19 Mortality Survey Report. Society of Actuaries Research Institute, Schaumburg, Illinois. Accessed: February 26, 2024: https://www.soa.org/4ac0fd/globalassets/assets/files/resources/experience-studies/2023/group-life-covid-mort-06-23.pdf

Iba, T. & Levy, J. H. (2022). Thrombosis and thrombocytopenia in COVID-19 and after COVID-19 vaccination. Trends in Cardiovascular Medicine 32(5), 249-256. https://doi.org/10.1016/j.tcm.2022.02.008

Igyártó, B. Z. & Qin, Z. (2024). The mRNA-LNP vaccines - the good, the bad and the ugly? Frontiers in Immunology 15, 1336906. https://doi.org/10.3389/fimmu.2024.1336906.

Ioannidis, J. P. (2005). Why most published research findings are false. PLoS Medicine 2(8), e124. https://doi.org/10.1371/journal.pmed.0020124 Erratum in: PLoS Medicine 2022 Aug 25; 19(8): e1004085. https://doi.org/10.1371/journal.pmed.1004085

Irrgang, P., Gerling, J., Kocher, K., Lapuente, D., Steininger, P., Habenicht, K., Wytopil, M., Beileke, S., Schäfer, S., Zhong, J., Ssebyatika, G., Krey, T., Falcone, V., Schülein, C., Peter, A. S., Nganou-Makamdop, K., Hengel, H., Held, J., Bogdan, C., Überla, K., Schober, K., Winkler, T. H., & Tenbusch, M.. (2023). Class switch toward noninflammatory, spike-specific IgG4 antibodies after repeated SARS-CoV-2 mRNA vaccination. Science Immunology 8(79), eade2798. https://doi.org/10.1126/sciimmunol.ade2798

Ishay, Y., Kenig, A., Tsemach-Toren, T., Amer, R., Rubin, L., Hershkovitz, Y., & Kharouf, F. (2021). Autoimmune phenomena following SARS-CoV-2 vaccination. International Immunopharmacology 99, 107970. https://doi.org/10.1016/j.intimp.2021.107970

Islam, N., Shkolnikov, V. M., Acosta, R. J., Klimkin, I., Kawachi, I., Irizarry, R. A., Alicandro, G., Khunti, K., Yates, T., Jdanov, D. A., White, M., Lewington, S., & Lacey, B. (2021). Excess deaths associated with covid-19 pandemic in 2020: age and sex disaggregated time series analysis in 29 high income countries. BMJ 373, n1137. https://doi.org/10.1136/bmj.n1137

Ittiwut, C., Mahasirimongkol, S., Srisont, S., Ittiwut, R., Chockjamsai, M., Durongkadech, P., Sawaengdee, W., Khunphon, A., Larpadisorn, K., Wattanapokayakit, S., Wetchaphanphesat, S., Arunotong, S., Srimahachota, S., Pittayawonganon, C., Thammawijaya, P., Sutdan, D., Doungngern, P., Khongphatthanayothin, A., Kerr, S. J., & Shotelersuk, V. (2022). Genetic basis of sudden death after COVID-19 vaccination in Thailand. Heart Rhythm 19(11), 1874-1879. https://doi.org/10.1016/j.hrthm.2022.07.019

Iwamura, N., Eguchi, K., Takatani, A., Tsutsumi, K., Koga, T., Araki, T., Aramaki, T., Terada, K., & Ueki, Y. (2024). A case series of rheumatoid arthritis flare including extra-articular manifestations following SARS-CoV-2 mRNA vaccination: A comprehensive cytokine assay. Cureus 16(4), e58740. https://doi.org/10.7759/cureus.58740

Jeet Kaur, R., Dutta, S., Charan, J., Bhardwaj, P., Tandon, A., Yadav, D., Islam, S., & Haque, M. (2021). Cardiovascular Adverse Events Reported from COVID-19 Vaccines: A Study Based on WHO Database. International Journal of General Medicine 14, 3909-3927. https://doi.org/10.2147/IJGM.S324349

Jiang, H. & Mei, Y.F. (2021). SARS-CoV-2 Spike Impairs DNA Damage Repair and Inhibits V(D)J Recombination In Vitro. Viruses 13(10), 2056. https://doi.org/10.3390/v13102056 Retraction in: Viruses. 2022 May 10;14(5): PMID: 34696485

Jiang, X., Wang, J., Deng, X., Xiong, F., Ge, J., Xiang, B., Wu, X., Ma, J., Zhou, M., Li, X., Li, Y., Li, G., Xiong, W., Guo, C., & Zeng, Z. (2019). Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Molecular Cancer 18(1), https://doi.org/10. https://doi.org/10.1186/s12943-018-0928-4

Joseph, W., Wang, Y., Bancel, S. (2018). Removal of DNA fragments in mRNA production process. United States Patent Number US10,077,439B2. September 18. https://patents.google.com/patent/US10077439B2/en

Ju, H. J., Lee, J. Y., Han, J. H., Lee, J. H., Bae, J. M. & Lee, S. (2023). Risk of autoimmune skin and connective tissue disorders after mRNA-based COVID-19 vaccination. Journal of the American Academy of Dermatology 89(4), 685-693. https://doi.org/10.1016/j.jaad.2023.05.017

Jung, SW., Jeon, J.J., Kim, Y.H., Choe, S. J., & Lee, S. (2024). Long-term risk of autoimmune diseases after mRNA-based SARS-CoV2 vaccination in a Korean, nationwide, population-based cohort study. Nature Communications 15, 6181 https://doi.org/10.1038/s41467-024-50656-8

Kämmerer, U., Pekova, S., Klement, R. J., Louwen, R., Borger, P., & Steger, K. (2023a). Response to Comments on Kämmerer, et al. (2023) regarding RT-PCR Testing. International Journal of Vaccine Theory, Practice, and Research, 3(1). https://doi.org/10.56098/ijvtpr.v3i1.82

Kämmerer, U., Pekova, S., Klement, R., Louwen, R., Borger, P., & Steger, K. (2023b). RT-PCR test targeting the conserved 5’-UTR of SARS-CoV-2 overcomes shortcomings of the first WHO-recommended RT-PCR test. International Journal of Vaccine Theory, Practice, and Research, 3(1), Article 1. https://doi.org/10.56098/ijvtpr.v3i1.71

Kanduc, D. (2021). From anti-severe acute respiratory syndrome coronavirus 2 immune response to cancer onset via molecular mimicry and cross-reactivity. Global Medical Genetics 8(4), 176-182. https://doi.org/10.1055/s-0041-1735590

Kanduc, D. & Shoenfeld, Y. (2020). Molecular mimicry between SARS-CoV-2 spike glycoprotein and mammalian proteomes: implications for the vaccine. Immunologic Research 68(5), 310-313. https://doi.org/10.1007/s12026-020-09152-6

Karikó, K., Muramatsu, H., Ludwig, J., Weissman, D. (2011). Generating the optimal mRNA for therapy: HPLC purification eliminates immune pactivation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Research 39, e142-2. https://doi.org/10.1093/nar/gkr695

Karlstad, Ø., Hovi, P., Husby, A., Härkänen, T., Selmer, R. M., Pihlström, N., Hansen, J. V., Nohynek, H., Gunnes, N., Sundström, A., Wohlfahrt, J., Nieminen, T. A., Grünewald, M., Gulseth, H. L., Hviid, A. & Ljung, R. (2022). SARS-CoV-2 vaccination and myocarditis in a Nordic cohort study of 23 million residents. JAMA Cardiology 7(6), 600-612. https://doi.org/10.1001/jamacardio.2022.0583

Kashani, B., Zandi, Z., Pourbagheri-Sigaroodi, A., Bashash, D. & Ghaffari, S. H. (2021). The role of toll-like receptor 4 (TLR4) in cancer progression: A possible therapeutic target? Journal of Cellular Physiology 236(6), 4121-4137. https://doi.org/10.1002/jcp.30166

Kastenhuber, E. R., Mercadante, M., Nilsson-Payant, B., Johnson, J. L., Jaimes, J. A., Muecksch, F., et al. (2022). Coagulation factors directly cleave SARS-CoV-2 spike and enhance viral entry. eLife 11, e77444. https://doi.org/10.7554/eLife.77444

Kauffman, R. P. (2024). mRNA COVID-19 vaccination during pregnancy was not linked to increased adverse neonatal outcomes. Annals of Internal Medicine 177(7), JC81. https://doi.org/10.7326/ANNALS-24-00621-JC

Kedmi, R., Ben-Arie, N. & Peer, D. (2010). The systemic toxicity of positively charged lipid nanoparticles and the role of Toll-like receptor 4 in immune activation. Biomaterials 31(26), 6867-75. https://doi.org/10.1016/j.biomaterials.2010.05.027

Keshavarz, P., Yazdanpanah, F., Emad, M., Hajati, A., Nejati, S. F., Ebrahimian Sadabad, F., Azrumelashvili, T., Mizandari, M. & Raman, S. S. (2022). Myocarditis Following COVID-19 Vaccination: Cardiac Imaging Findings in 118 Studies. Tomography 8(4), 1959-1973. https://doi.org/10.3390/tomography8040164

Khan, Z., Ahmad, U., Ualiyeva, D., Amissah, O. B., Khan, A., Noor, Z. & Zaman, N. (2022). Guillain-Barre syndrome: An autoimmune disorder post-COVID-19 vaccination? Clinical Immunology Communications 2, 1-5. https://doi.org/10.1016/j.clicom.2021.12.002

Khayat-Khoei, M., Bhattacharyya, S., Katz, J., Harrison, D., Tauhid, S., Bruso, P., Houtchens, M. K., Edwards, K. R., & Bakshi, R. (2022). COVID-19 mRNA vaccination leading to CNS inflammation: a case series. Journal of Neurology. 269(3), 1093-1106. https://doi.org/10.1007/s00415-021-10780-7

Kim, D. H., Kim, J. H., Oh, I. S., Choe, Y. J., Choe, S. A., & Shin, J. Y. (2024a). Adverse events following COVID-19 vaccination in adolescents: Insights from pharmacovigilance study of VigiBase. Journal of Korean Medical Science 39(8), e76. https://doi.org/10.3346/jkms.2024.39.e76

Kim, E. S., Jeon, M.-T., Kim, K.-S., Lee, S., Kim, S. & Kim, D.-G. (2021). Spike proteins of sars-cov-2 induce pathological changes in molecular delivery and metabolic function in the brain endothelial cells. Viruses 13, 2021. https://doi.org/10.3390/v13102021

Kim, H. J., Kim, M. H., Park, S. J., Choi, M. G. & Chun, E. M. (2024b). Autoimmune adverse event following COVID-19 vaccination in Seoul, South Korea. Journal of Allergy and Clinical Immunology 153(6), 1711-1720. https://doi.org/10.1016/j.jaci.2024.01.025

Kim, H., Ahn, H. S., Hwang, N., Huh, Y., Bu, S., Seo, K. J., Kwon, S. H., Lee, H. K., Kim, J. W., Yoon, B. K., & Fang, S. (2023). Epigenomic landscape exhibits interferon signaling suppression in the patient of myocarditis after BNT162b2 vaccination. Scientific Reports 13(1), 8926. https://doi.org/10.1038/s41598-023-36070-y

Kim, N., Jung, Y., Nam, M., Kang, M. S., Lee, M. K., Cho, Y., Choi, E.-K., Hwang, G.-S., & Kim, H. S. (2017). Angiotensin II affects inflammation systems via AMPK-related signalling pathways in HL-1 atrial myocytes. Scientific Reports 7, 10328. https://doi.org/10.1038/s41598-017-09675-3

Kiszel, P., Sík, P., Miklós, J., Kajdácsi, E., Sinkovits, G., Cervenak, L., & Prohászka, Z. (2023). Class switch towards spike protein-specific IgG4 antibodies after SARS-CoV-2 mRNA vaccination depends on prior infection history. Scientific Reports 13(1), 13166. https://doi.org/10.1038/s41598-023-40103-x

Kitagawa, H., Kaiki, Y., Sugiyama, A., Nagashima, S., Kurisu, A., Nomura, T., Omori, K., Akita, T., Shigemoto, N., Tanaka, J., & Ohge, H. (2022). Adverse reactions to the BNT162b2 and mRNA-1273 mRNA COVID-19 vaccines in Japan. Journal of Infection and Chemotherapy 28(4), 576-581. https://doi.org/10.1016/j.jiac.2021.12.034

Klingel, H., Krüttgen. A., Imöhl. M., & Kleines. M. (2023). Humoral immune response to SARS-CoV-2 modmRNA vaccines is associated with choice of vaccine and systemic adverse reactions. Clinical & Experimental Vaccine Research 12(1), 60-69. https://doi.org/10.7774/cevr.2023.12.1.60

Kobashi, Y., Shimazu, Y., Kawamura, T., Nishikawa, Y., Omata, F., Kaneko, Y., et al. (2022). Factors associated with anti- severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein antibody titer and neutralizing activity among healthcare workers following vaccination with the BNT162b2 vaccine. PLoS ONE 17, e0269917. https://doi.org/10.1371/journal.pone.0269917

Kobayashi, M., Kobayashi, S., Hayashi, T., Tachibana, M., Saito, T., Ogura, K., & Miyakoshi, S. (2023).Immune thrombocytopenic purpura in an elderly patient with cerebral hemorrhage after the fourth mRNA-1273 COVID-19 vaccination. Geriatrics & Gerontology International 23(12), 969-970. https://doi.org/10.1111/ggi.14737

König, B., Kirchner, J.O. (2024) Methodological Considerations Regarding the Quantification of DNA Impurities in the COVID-19 mRNA Vaccine Comirnaty®. Methods and Protocols 7(3): 41. https://doi.org/10.3390/mps7030041

Kory, P. & Pfeiffer, M. B. (2024). Princess Catherine is one of many more young adults with cancer. Washington Post. 3/26/2024. https://www.washingtontimes.com/news/2024/mar/26/princess-catherine-is-one-of-many-more-young-adult/

Kostoff, R. N. (2022). Anatomy of a retraction. Trial Site News. Accessed: April 10, 2024: https://www.trialsitenews.com/a/anatomy-of-a-retraction-ea3c16b1

Kostoff, R. N. (2023a). Are COVID-19 vaccine-induced neurological events rare? Trial Site News, Feb 20. Accessed: July 7, 2024. https://www.trialsitenews.com/a/are-covid-19-vaccine-induced-adverse-neurological-events-rare-6adb293f

Kostoff, R. N. (2023b). Is the COVID-19 vaccine a bioweapon? Trial Site News. October 12. https://www.trialsitenews.com/a/is-the-covid-19-vaccine-a-bioweapon-c778c1d4

Kostoff, R. N., Calina, D., Kanduc, D., Briggs, M. B., Vlachoyiannopoulos, P., Svistunov, A. A., & Tsatsakis, A. (2021). Why are we vaccinating children against COVID-19? Toxicology Reports 8, 1665-1684. https://doi.org/10.1016/j.toxrep.2021.08.010. Retraction in: Toxicology Reports 2022 May 06, 9, 1065. Erratum in: Toxicology Reports 2021, 8, 1981. PMID: 34540594

Kostoff, R. N., Kanduc, D., Porter, A. L., Shoenfeld, Y., Calina, D., Briggs, M. B., Spandidos, D. A., & Tsatsakis, A. (2020). Vaccine- and natural infection-induced systems that could modulate vaccine safety. Toxicology Reports 7, 1448-1458. https://doi.org/10.1016/j.toxrep.2020.10.016

Kouhpayeh, H., & Ansari, H. (2022). Adverse events following COVID-19 vaccination: A systematic review and meta-analysis. International Immunopharmacology 109, 108906. https://doi.org/10.1016/j.intimp.2022.108906

Kountouras, J., Tzitiridou-Chatzopoulou, M., Papaefthymiou, A., Chatzopoulos, D., & Doulberis, M. (2023). COVID-19 mRNA vaccine effectiveness against elderly frail people. Medicina (Kaunas) 59(2), 202. https://doi.org/10.3390/medicina59020202

Krauson, A. J., Casimero, F. V., Siddiquee, Z., & Stone, J. R. (2023). Duration of SARS-CoV-2 modmRNA vaccine persistence and factors associated with cardiac involvement in recently vaccinated patients. NPJ Vaccines 8, 141. https://doi.org/10.1038/s41541-023-00742-7

Kreher, M. A., Ahn, J., Werbel, T., & Motaparthi, K. (2022). Subcutaneous panniculitis-like T-cell lymphoma after COVID-19 vaccination. JAAD Case Reports 28, 18-20. https://doi.org/10.1016/j.jdcr.2022.08.006

Krug, A., Stevenson, J. & Høeg, T. B. (2022). BNT162b2 vaccine-associated MYO/pericarditis in adolescents: a stratified risk-benefit analysis. European Journal of Clinical Investigation 52, e13759. https://doi.org/10.1111/eci.13759

Kuan, A. S., Chen, S. P., Wang, Y. F., & Wang, S. J. (2023). Prolonged headache with vaccine-and dose-specific headache pattern associated with vaccine against SARS-CoV-2 in patients with migraine. Cephalalgia. 43(10), 3331024231208110. https://doi.org/10.1177/03331024231208110

Kuhbandner, C. & Reitzner, M. (2023). Estimation of excess mortality in Germany during 2020–2022. Cureus 15, e39371. https://doi.org/10.7759/cureus.39371

Kumar, D., Verma, S., & Mysorekar, I. U. (2023). COVID-19 and pregnancy: clinical outcomes; mechanisms, and vaccine efficacy. Translational Research 251, 84-95. https://doi.org/10.1016/j.trsl.2022.08.007

Kwon, Y., Hwang, I., Ko, M., Kim, H., Kim, S., Seo, S. Y., Cho, E., & Lee, Y. K. (2023). Self-reported adverse events after 2 doses of COVID-19 vaccine in Korea. Epidemiology and Health 45, e2023006. https://doi.org/10.4178/epih.e2023006

Kyriakopoulos, A. M., Nigh, G., McCullough, P. A., & Seneff, S. (2024). Oncogenesis and autoimmunity as a result of mRNA COVID-19 vaccination. TechRxiv. April 23. https://doi.org/10.22541/au.171387387.73158754/v1

Kyriakopoulos, A. M., Nigh, G., McCullough, P. A., Olivier, M. D., & Seneff, S. (2023). Bell’s palsy or an aggressive infiltrating basaloid carcinoma post-mRNA vaccination for COVID-19? A case report and review of the literature. EXCLI Journal 22, 992-1011. https://doi.org/10.17179/excli2023-6145

Laderoute, M. (2023). On the subject of turbo cancers. Substack 11 October. Accessed: June 21, 2024: https://hervk102.substack.com/p/on-the-subject-of-turbo-cancers

Lataster, R. (2024). How the adverse effect counting window affected vaccine safety calculations in randomised trials of COVID-19 vaccines. Journal of Evaluation in Clinical Practice. Epub ahead of print. https://doi.org/10.1111/jep.13962

Lazareva, M., Renemane, L., Vrublevska, J., & Rancans, E. (2024) New-onset psychosis following COVID-19 vaccination: a systematic review. Frontiers in Psychiatry 15, 1360338. https://doi.org/10.3389/fpsyt.2024.1360338

Lazarus, R., Baos, S., Cappel-Porter, H., Carson-Stevens, A., Clout, M., Culliford, L., et al. (2021). Safety and immunogenicity of concomitant administration of COVID-19 vaccines (ChAdOx1 or BNT162b2) with seasonal influenza vaccines in adults in the UK (ComFluCOV): a multicentre, randomised, controlled, phase 4 trial. The Lancet 398(10318), 2277-2287. https://doi.org/10.1016/S0140-6736(21)02329-1

Ledford H (2024). Why are so many young people getting cancer? What the data say. Nature 627, 258-260. https://doi.org/10.1038/d41586-024-00720-6

Lee, E. J., Beltrami-Moreira, M., Al-Samkari, H., Cuker, A., DiRaimo, J., Gernsheimer, T., Kruse, A., Kessler, C., Kruse, C., Leavitt, A. D., Lee, A. I., Liebman, H. A., Newland, A. C., Ray, A. E., Tarantino, M. D., Thachil, J., Kuter, D. J., Cines, D. B., & Bussel, J. B. (2022). SARS-CoV-2 vaccination and ITP in patients with de novo or preexisting ITP. Blood 139(10), 1564-1574. https://doi.org/10.1182/blood.2021013411

Lee, S., Lee, C. H., Seo, M. S., & Yoo, J. I. (2022). Integrative analyses of genes about venous thromboembolism: An umbrella review of systematic reviews and meta-analyses. Medicine (Baltimore) 101, e31162. https://doi.org/10.1097/MD.0000000000031162

Lee, T. J., Lu, C. H., & Hsieh, S. C. (2022b). Herpes zoster reactivation after mRNA-1273 vaccination in patients with rheumatic diseases. Annals of the Rheumatic Diseases 81(4), 595-597. https://doi.org/10.1136/annrheumdis-2021-221688

Levy, J. H., Iba, T., Olson, L. B., Corey, K. M., Ghadimi, K., & Connors, J. M.. (2021). COVID-19: Thrombosis, thromboinflammation, and anticoagulation considerations. International Journal of Laboratory Hematology 43 Suppl 1(Suppl 1), 29-35. https://doi.org/10.1111/ijlh.13500

Li, X., Ostropolets, A., Makadia, R., Shoaibi, A., Rao, G., Sena, A. G., et al. (2021). Characterising the background incidence rates of adverse events of special interest for covid-19 vaccines in eight countries: multinational network cohort study. BMJ 373, n1435. https://doi.org/10.1136/bmj.n1435

Li, C., Lee, A., Grigoryan, L., Scott, M. K., Trisal, M., Wimmers, F., et al. (2022). Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine. Nature Immunology 23(4), 543-555. https://doi.org/10.1038/s41590-022-01163-9

Li, J. X., Wang, Y. H., Bair, H., Hsu, S. B., Chen, C., Wei, J. C., & Lin, C. J. (2023). Risk assessment of retinal vascular occlusion after COVID-19 vaccination. NPJ Vaccines 8(1), 64. https://doi.org/10.1038/s41541-023-00661-7

Li, S., MacLaughlin, F. C., Fewell, J. G., Gondo, M., Wang, J., Nicol, F., Dean, D. A., & Smith, L. C. (2001). Muscle-specific enhancement of gene expression by incorporation of SV40 enhancer in the expression plasmid. Gene Therapy 8(6), 494-7. https://doi.org/10.1038/sj.gt.3301419. PMID: 11313829

Lin, C. H., Chen, T. A., Chiang, P. H., Hsieh, A. R., Wu, B. J., Chen, P. Y., Lin, K. C., Tsai, Z. S., Lin, M. H., Chen, T. J. & Chen, Y. C. (2024). Incidence and nature of short-term adverse events following COVID-19 second boosters: Insights from Taiwan's universal vaccination strategy. Vaccines (Basel) 12(2), 149. https://doi.org/10.3390/vaccines12020149

Liu, J., Wang, J., Xu, J., Xia, H., Wang, Y., Zhang, C., et al. (2021). Comprehensive investigations revealed consistent pathophysiological alterations after vaccination with COVID-19 vaccines. Cell Discovery 7(1), 99. https://doi.org/10.1038/s41421-021-00329-3

Loacker, L., Kimpel, J., Bánki, Z., Schmidt, C. Q., Griesmacher, A., & Anliker, M. (2023). Increased PD-L1 surface expression on peripheral blood granulocytes and monocytes after vaccination with SARS-CoV2 mRNA or vector vaccine. Clinical Chemistry and Laboratory Medicine 61, e17-9. https://doi.org/10.1515/cclm-2022-0787

Luo, D., Wu, Z., Wang, D., Zhang, J., Shao, F., Wang, S., Cestellos-Blanco, S., Xu, D., Cao, Y. (2023) Lateral flow immunoassay for rapid and sensitive detection of dsRNA contaminants in in vitro-transcribed mRNA products. Molecular Therapy Nucleic Acids 32:445-453. https://doi.org/10.1016/j.omtn.2023.04.005

Lyons-Weiler, J. (2020). Pathogenic priming likely contributes to serious and critical illness and mortality in COVID-19 via autoimmunity. Journal of Translational Autoimmunity 3, 100051. https://doi.org/10.1016/j.jtauto.2020.100051

Mahroum, N. & Shoenfeld, Y. (2022). COVID-19 vaccination can occasionally trigger autoimmune phenomena, probably via inducing age-associated B cells. International Journal of Rheumatic Diseases 25(1), 5-6. https://doi.org/10.1111/1756-185X.14259

Mahroum, N., Lavine, N., Ohayon, A., Seida, R., Alwani, A., Alrais, M., Zoubi, M., & Bragazzi, N. L. (2022). COVID-19 vaccination and the rate of immune and autoimmune adverse events following immunization: Insights from a narrative literature review. Frontiers in Immunology 13, 872683. https://doi.org/10.3389/fimmu.2022.872683

Makis, W. (2023a). Turbo cancer in doctors - young COVID-19 vaccinated doctors are developing aggressive turbo cancers - 54 doctors and their tragic stories. Substack. 25 September. Accessed: June 21, 2024: https://makismd.substack.com/p/turbo-cancer-in-doctors-young-covid

Makis, W. (2023b). Turbo cancer. Ages 18-24: College & university COVID-19 vaccine mandated students are now developing Stage 4 cancers - 72 cases (in 2023): Lymphoma, leukemia, brain, testicular, sarcoma, breast, colon. Substack. 23 September 2023. Accessed: June 21, 2024: https://makismd.substack.com/p/turbo-cancer-ages-18-24-college-and

Mansanguan, S., Charunwatthana, P., Piyaphanee, W., Dechkhajorn, W., Poolcharoen, A., & Mansanguan, C. (2022). Cardiovascular manifestation of the BNT162b2 mRNA COVID-19 vaccine in adolescents. Tropical Medicine and Infectious Disease 7, 196. https://doi.org/10.3390/tropicalmed7080196

Markert, U. R., Szekeres-Bartho, J., & Schleußner, E. (2021). Adverse effects on female fertility from vaccination against COVID-19 unlikely. Journal of Reproductive Immunology 148, 103428. https://doi.org/10.1016/j.jri.2021.103428

Martora, F., Megna, M., Battista, T., Scalvenzi, M., Villani, A., Cacciapuoti, S., & Potestio, L. (2024). Viral reactivation following COVID-19 vaccination: a review of the current literature. Clinical and Experimental Dermatology 49(6), 556-565. https://doi.org/10.1093/ced/llae061

Matsuda, M., Funakubo Asanuma, Y., Emoto, K., Sakai, S., Okumura, N., Yazawa, H., Maruyama, T., Tsuzuki Wada, T., Yokota, K., Araki, Y., Akiyama, Y., & Mimura, T. (2024). New-onset of rheumatic diseases following COVID-19 vaccination: the report of three cases and a literature review. Immunological Medicine 1-12. https://doi.org/10.1080/25785826.2024.2339542

Matzinger P. (1994). Tolerance, danger, and the extended family. Annual Review of Immunolology. 12:991-1045. https://doi.org/10.1146/annurev.iy.12.040194.005015

McCullough Foundation. (2023). Our peer-reviewed and published studies have proven that COVID-19 vaccines can cause death. June 23. Accessed: August 14, 2024: https://x.com/mcculloughfund/status/1804900877594960243?s=46&t=zG49j3dgO6EP9uYNOkasrQ

McCullough, P. A. (2023). America's long, expensive, and deadly love affair with mRNA. Accessed: March 15, 2023: https://petermcculloughmd.substack.com/p/americas-long-expensive-and-deadly

McCullough, P. A. (2024). Florida surgeon general calls for a complete halt on Pfizer and Moderna modmRNA vaccines. Accessed: January 4, 2024: https://petermcculloughmd.substack.com/p/breaking-florida-surgeon-general

McCullough, P. A. (2024b). BREAKING--Springer Nature Cureus Journal of Medical Science violates committee on publication ethics (COPE) guidelines. Courageous Discourse [Substack]. 2/24/2024. Accessed: April 10, 2024: https://petermcculloughmd.substack.com/p/breaking-springer-nature-cureus-journal

McGonagle, D., De Marco, G., & Bridgewood, C. (2021). Mechanisms of immunothrombosis in vaccine-induced thrombotic thrombocytopenia (VITT) compared to natural SARS-CoV-2 infection. Journal of Autoimmunity 121, 102662. https://doi.org/10.1016/j.jaut.2021.102662

McKernan, K., Helbert, Y., Kane, L. T., & McLaughlin, S. (2023). Sequencing of bivalent Moderna and Pfizer modmRNA vaccines reveals nanogram to microgram quantities of expression vector dsDNA per dose. OSFPreprints. https://doi.org/10.31219/osf.io/b9t7m

McKinney, E. F., Lee, J. C., Jayne, D. R., Lyons, P. A., & Smith, K. G. (2015). T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection. Nature 523, 612-6. https://doi.org/10.1038/nature14468

Mead, M. N., Seneff, S., Wolfinger, R., Rose, J., Denhaerynck, K., Kirsch, S., & McCullough, P. A. (2024a). COVID-19 Modified mRNA “Vaccines” Part 1: Lessons Learned from Clinical Trials, Mass Vaccination, and the Bio-Pharmaceutical Complex. International Journal of Vaccine Theory, Practice, and Research , 3(2), 1112-1178. https://doi.org/10.56098/fdrasy50

Mead, M. N., Seneff, S., Wolfinger, R., Rose, J., Denhaerynck, K., Kirsch, S., & McCullough, P. A. (2024b). Retracted: COVID-19 modmRNA vaccines: Lessons learned from the registrational trials and global vaccination campaign. Cureus 16(1), e52876. https://doi.org/10.7759/cureus.52876

Medicines & Healthcare Products Regulatory Agency (2024). The yellow card scheme. n.d. Available: https://yellowcard.mhra.gov.uk/information

Michels, C., Perrier, D., Kunadhasan, J., Clark, E., Gehrett, J., Gehrett, B., Kwiatek, K., Adams, S., Chandler, R., Stagno, L., Damian, T., Delph, E., & Flowers, C. (2023). Forensic analysis of the 38 subject deaths in the 6- month interim report of the Pfizer/BioNTech BNT162b2 modmRNA vaccine clinical trial. International Journal of Vaccine Theory, Practice, and Research 3, 973-1009. https://doi.org/10.56098/ijvtpr.v3i1.85

Milano, G., Gal, J., Creisson, A., & Chamorey, E. (2021). Myocarditis and COVID-19 modmRNA vaccines: a mechanistic hypothesis involving dsRNA. Future Virology 17, https://doi.org/10.2217/fvl-2021-0280

Mingot-Castellano, M. E., Butta, N., Canaro, M., Gómez Del Castillo Solano, M. D. C., Sánchez-González, B., Jiménez-Bárcenas, R., Pascual-Izquierdo, C., Caballero-Navarro, G., Entrena Ureña, L., & José González-López, T., On behalf of the Gepti. (2022). COVID-19 vaccines and autoimmune hematologic disorders. Vaccines (Basel) 10(6), 961. https://doi.org/10.3390/vaccines10060961

Mohseni Afshar, Z., Sharma, A., Babazadeh, A., Alizadeh-Khatir, A., Sio, T. T., Taghizadeh Moghadam, M. A., Tavakolli Pirzaman, A., Mojadad, A., Hosseinzadeh, R., Barary, M., & Ebrahimpour, S. (2023). A review of the potential neurological adverse events of COVID-19 vaccines. Acta Neurologica Belgica. 123(1), 9-44. https://doi.org/10.1007/s13760-022-02137-2

Montano, D. (2021). Frequency and associations of adverse reactions of COVID-19 vaccines reported to pharmacovigilance systems in the European Union and the United States. Frontiers in Public Health 9, 756633. https://doi.org/10.3389/fpubh.2021.756633

Morais, P., Adachi, H., & Yu, Y. T. (2021). The critical contribution of pseudouridine to mRNA COVID-19 vaccines. Frontiers in Cell and Developmental Biology 9, 789427. https://doi.org/10.3389/fcell.2021.789427

Mörl, F., Günther, M., & Rockenfeller, R. (2022). Is the harm-to-benefit ratio a key criterion in vaccine approval? Front Med (Lausanne). 9, 879120. https://doi.org/10.3389/fmed.2022.879120

Mulroney, T. E., Pöyry, T., Yam-Puc, J. C., Rust, M., Harvey, R. F., Kalmar, L., Horner, E., Booth, L., Ferreira, A. P., Stoneley, M., Sawarkar, R., Mentzer, A. J., Lilley, K. S., Smales. C. M., von der Haar, T., Turtle, L., Dunachie, S., Klenerman, P., Thaventhiran, J. E. D., & Willis, A. E. (2023). N1-methylpseudouridylation of mRNA causes +1 ribosomal frameshifting. Nature 625(7993), 189-194. https://doi.org/10.1038/s41586-023-06800-3

Musialik, J., Kolonko, A., & Więcek, A. (2022). Increased EBV DNAemia after Anti-SARS-CoV-2 Vaccination in Solid Organ Transplants. Vaccines (Basel). 10(7), 992. https://doi.org/10.3390/vaccines10070992

Naaber, P., Tserel, L., Kangro, K., Sepp, E., Jürjenson, V., Adamson, A., et al. (2021). Dynamics of antibody response to BNT162b2 vaccine after six months: A longitudinal prospective study. The Lancet Regional Health - Europe 10, 100208. https://doi.org/10.1016/j.lanepe.2021.100208

Nabizadeh, F., Ramezannezhad, E., Kazemzadeh, K., Khalili, E., Ghaffary, E. M., & Mirmosayyeb, O. (2022). Multiple sclerosis relapse after COVID-19 vaccination: A case report-based systematic review. Journal of Clinical Neuroscience 104, 118-125. https://doi.org/10.1016/j.jocn.2022.08.012

Nabizadeh, F., Noori, M., Rahmani, S., & Hosseini, H. (2023). Acute disseminated encephalomyelitis (ADEM) following COVID-19 vaccination: A systematic review. Journal of Clinical Neuroscience. 111, 57-70. https://doi.org/10.1016/j.jocn.2023.03.008

Nance, K. D. & Meier, J. L. (2021). Modifications in an emergency: the role of N1-methylpseudouridine in COVID-19 vaccines. ACS Central Science 7, 748-56. https://doi.org/10.1021/acscentsci.1c00197

Navarro-Bielsa, A., Gracia-Cazaña, T., Aldea-Manrique, B., Abadías-Granado, I., Ballano, A., Bernad, I., & Gilaberte, Y. (2023). COVID-19 infection and vaccines: Potential triggers of Herpesviridae reactivation. Anais Brasileiros de Dermatologia 98(3), 347-354. https://doi.org/10.1016/j.abd.2022.09.004

Ndeupen, S., Qin, Z., Jacobsen, S., Bouteau, A., Estanbouli, H. & Igyártó, B. Z. (2021). The mRNA-LNP platform’s lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory. iScience 24, 103479. https://doi.org/10.1016/j.isci.2021.103479

Neil, M., Fenton, N. E., & McLachlan, S. (2024). The extent and impact of vaccine status miscategorisation on covid-19 vaccine efficacy studies. MedRxiv Preprint. https://doi.org/10.1101/2024.03.09.24304015

Ntouros. P. A., Kravvariti, E., Vlachogiannis, N. I., Pappa, M., Trougakos, I. P., Terpos, E., Tektonidou, M. G., Souliotis, V. L., & Sfikakis, P. P. (2022). Oxidative stress and endogenous DNA damage in blood mononuclear cells may predict anti-SARS-CoV-2 antibody titers after vaccination in older adults. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 868(6), 166393. https://doi.org/10.1016/j.bbadis.2022.166393

Nyström, S., & Hammarström, P. (2022). Amyloidogenesis of SARS-CoV-2 spike protein. Journal of the American Chemical Society, 144(20), 8945–8950. https://doi.org/10.1021/jacs.2c03925

O'Driscoll, M., Ribeiro Dos Santos, G., Wang, L., Cummings, D. A. T., Azman, A. S., Paireau, J., Fontanet, A., Cauchemez, S., & Salje, H. (2021). Age-specific mortality and immunity patterns of SARS-CoV-2. Nature 590(7844), 140-145. https://doi.org/10.1038/s41586-020-2918-0

Oldfield, P. R., Hibberd, J., & Bridle, B. W. (2021). How Does Severe acute respiratory syndrome-coronavirus-2 affect the brain and its implications for the vaccines currently in use. Vaccines (Basel). 10(1), 1. https://doi.org/10.3390/vaccines10010001

Oller, J. W., & Santiago, D. (2022). All cause mortality and COVID-19 injections: Evidence from 28 weeks of Public Health England “COVID-19 vaccine surveillance reports.” International Journal of Vaccine Theory, Practice, and Research 2(2), 301–319. https://doi.org/10.56098/ijvtpr.v2i2.42

OOIR: Observatory of International Research (2024). Trending Research. Accessed: July 3, 2024: https://ooir.org/index.php?days=14

Orient, J. M. (2023). Beyond negative evidence: Lessons from the disputes on DNA contamination of COVID-19 vaccines. J Am Phys Surg 28, 106-12. https://www.jpands.org/search-results.htm

Oster, M.E., Shay, D.K., Su, J.R., Gee, J., Creech, C.B., Broder, K.R., Edwards, K., Soslow, J.H., Dendy, J.M., Schlaudecker, E., Lang, S.M., Barnett, E.D., Ruberg, F.L., Smith, M.J., Campbell, M.J., Lopes, R.D., Sperling, L.S., Baumblatt, J.A., Thompson, D.L., Marquez, P.L., Strid, P., Woo, J., Pugsley, R., Reagan-Steiner, S., DeStefano, F., & Shimabukuro, T.T. (2022). Myocarditis cases reported after mRNA-based COVID-19 vaccination in the US from December 2020 to August 2021. JAMA 327(4), 331-340. https://doi.org/10.1001/jama.2021.24110

Ostrowski, S. R., Sogaard, O. S., Tolstrup, M., Staerke, N. B., Lundgren, J., Ostergaard, L., & Hvas, A. M. (2021). Inflammation and platelet activation after COVID-19 vaccines - possible mechanisms behind vaccine-induced immune thrombocytopenia and thrombosis. Frontiers in Immunology 12. https://doi.org/10.3389/fimmu.2021.779453

Oueijan RI, Hill OR, Ahiawodzi PD, Fasinu PS, Thompson DK. Rare Heterogeneous Adverse Events Associated with mRNA-Based COVID-19 Vaccines: A Systematic Review. Medicines (Basel) 2022;9(8):43. https://doi.org/10.3390/medicines9080043

O’Looney, J., Hirschman, R., & Faithfull, B. (2022, October 11). Funeral Directors & Embalmers Unite to Expose A Day in the Death of Life—Counterspin Media. https://ugetube.com/watch/tJorwmSg5i6FVOd

Ouranidis, A., Vavilis, T., Mandala ,E., Davidopoulou, C., Stamoula, E., Markopoulou, C.,K., Karagianni, A., Kachrimanis, K. (2021) mRNA Therapeutic Modalities Design, Formulation and Manufacturing under Pharma 4.0 Principles. Biomedicines. 10(1):50. https://doi.org/10.3390/biomedicines10010050

Pacheco, Y., Acosta-Ampudia, Y., Monsalve, D. M., Chang, C., Gershwin, M. E., & Anaya, J. M. (2019). Bystander activation and autoimmunity. Journal of Autoimmunity 103, 102301. https://doi.org/10.1016/j.jaut.2019.06.012

Padilla-Flores, T., Sampieri, A., & Vaca, L. (2024). Incidence and management of the main serious adverse events reported after COVID-19 vaccination. Pharmacology Research & Perspectives 12(3), e1224. https://doi.org/10.1002/prp2.1224

Palmer, M., Bhakdi, S., & Wodarg, W. (2022). On the use of the Pfizer and the Moderna COVID-19 modmRNA vaccines in children and adolescents. Doctors for COVID Ethics, Amsterdam, The Netherlands. Accessed: February 26: https://doctors4covidethics.org/on-the-use-of-the-pfizer-and-the-moderna-covid-19-mrna-vaccines-in-children-and-adolescents/

Parhiz, H., Brenner, J. S., Patel, P. N., Papp, T. E., Shahnawaz, H., Li, Q., Shi, R., Zamora, M. E., Yadegari, A., Marcos-Contreras, O. A., Natesan, A., Pardi, N., Shuvaev, V. V., Kiseleva, R., Myerson, J. W., Uhler, T., Riley, R. S., Han, X., Mitchell, M. J., Lam, K., Heyes, J., Weissman, D., & Muzykantov, V. R. (2022). Added to pre-existing inflammation, mRNA-lipid nanoparticles induce inflammation exacerbation (IE). Journal of Controlled Release 344, 50-61. https://doi.org/10.1016/j.jconrel.2021.12.027

Parry, P. I., Lefringhausen, A., Turni, C., Neil, C. J., Cosford, R., Hudson, N. J., & Gillespie, J. (2023). ’Spikeopathy’: COVID-19 spike protein is pathogenic, from both virus and vaccine mRNA. Biomedicine 11, 2287. https://doi.org/10.3390/biomedicines11082287

Pasternak, G., Pieniawska-Śmiech, K., Walkowiak, M., Sado, J., Pytel, A., Jasińska, P., Kierbiedź-Guzik, N., Bolaczek, P., Fleischer-Stępniewska, K., Babicki, M., Pentoś, K., & Lewandowicz-Uszyńska, A. (2023). Before and after: Attitude and adverse effects induced by the first and second doses of mRNA BNT162b2 vaccine among healthcare professionals in the first weeks after their introduction in Poland. Vaccines (Basel) 11(5), 883. https://doi.org/10.3390/vaccines11050883

Patalon, T., Saciuk, Y., Perez, G., Peretz, A., Ben-Tov, A., & Gazi,t S. (2023). Dynamics of naturally acquired immunity against severe acute respiratory syndrome coronavirus 2 in children and. Adolescents. The Journal of Pediatrics 257, 113371. https://doi.org/10.1016/j.jpeds.2023.02.016

Patone, M., Mei, X. W., Handunnetthi, L., Dixon, S., Zaccardi, F., Shankar-Hari, M., bWatkinson, P., Khunti, K., Harnden, A., Coupland, C. A. C., Channon, K. M., Mills, N. L., Sheikh, A., & Hippisley-Cox, J. (2022). Risk of myocarditis after sequential doses of COVID-19 vaccine and SARS-CoV-2 infection by age and sex. Circulation 146(10), 743-754. https://doi.org/10.1161/CIRCULATIONAHA.122.059970

Patterson, B. K., Yogendra, R., Francisco, E. B., Long, E., Pise, A., Osgood, E., et al. (2024). Persistence of S1 spike protein in CD16+ monocytes up to 245 days in SARS-CoV-2 negative post COVID-19 vaccination individuals with post-acute sequalae of COVID-19 (p ASC)-like symptoms. medRxiv Preprint. March 24. https://www.medrxiv.org/content/10.1101/2024.03.24.24304286v1

Pavlova NN, Zhu J, Thompson CB. (2022) The hallmarks of cancer metabolism: Still emerging. Cell Metabolism;34(3):355-377. https://doi.org/10.1016/j.cmet.2022.01.007

Payne, L. A., Wise, L. A., Wesselink, A. K., Wang, S., Missmer, S. A., & Edelman, A. (2024). Association between COVID-19 vaccination and menstruation: a state of the science review. BMJ Sexual Reproductive Health 50(3), 212-225. https://doi.org/10.1136/bmjsrh-2024-202274

Petersen, M. H. & Bjørn, M. (2023). Development of multiple cherry angiomas in a child after COVID-19 vaccination. Acta Dermato-Venereologica 103, adv00870. https://doi.org/10.2340/actadv.v103.6526

Pezzullo, A.M., Axfors, C., Contopoulos-Ioannidis, D. G., Apostolatos, A., & Ioannidis, J. P. (2023). Age-stratified infection fatality rate of COVID-19 in the non-elderly population. Environmental Research 216, 114655. https://doi.org/10.1016/j.envres.2022.114655

Pfizer Report, Japanese Government (2020). SARS CoV2 mRNA Vaccine (BNT162, PF-07302048) 23 pages. https://www.docdroid.net/xq0Z8B0/pfizer-report-japanese-government-pdf

Pfizer, Inc. (2022). Appendix 2.2 Cumulative and Interval Summary Tabulation of Serious and Non-serious Adverse Reactions From Post-marketing Data Sources (BNT162B2). New York, NY. https://www.globalresearch.ca/wp-content/uploads/2023/05/pfizer-report.pdf

Pfizer, Inc. (2022b). Periodic safety update report #3 for active substance: COVID-19 modmRNA vaccine, BNT162b2. BioNTech Manufacturing GmbH, Mainz, Germany. https://tkp.at/wp-content/uploads/2023/03/3.PSUR-1.pdf

Pharmaceutical Technology. (2024, April 8). COVID-19 Vaccination Tracker: Daily Rates, Statistics & Updates. Pharmaceutical Technology. https://www.pharmaceutical-technology.com/covid-19-vaccination-tracker/

Phinance Technologies. (2022). Quarterly Excess Death Rate Analysis. Accessed: December 13, 2023: https://phinancetechnologies.com/HumanityProjects/Quarterly%20Excess%20Death%20Rate%20Analysis%20-%20US.htm

Pillay, J., Gaudet, L., Wingert, A., Bialy, L., Mackie, A. S., Paterson, D. I., & Hartling, L. (2022). Incidence, risk factors, natural history, and hypothesised mechanisms of myocarditis and pericarditis following COIVD-19 vaccination: living evidence syntheses and review. British Medical Journal 378, e069445. https://doi.org/10.1136/bmj-2021-069445

Pilotto, A., Catania, M., Mattioli, I., Zoppi, N., Ceccardi, G., Rao, R., Gipponi, S., Magoni, M., Gamba, M., & Padovani, A. (2024). Increased risk of functional neurological disorders following SARS-CoV-2 vaccination. European Journal of Neurology. 31(4), e16191. https://doi.org/10.1111/ene.16191

Polack, F. P., Thomas. S. J., Kitchin. N., Absalon, J., Gurtman, A., Lockhart, S., Perez, J. L., Pérez Marc, G., Moreira, E. D., Zerbini, C., Bailey. R., Swanson. K. A., Roychoudhury. S., Koury. K., Li. P., Kalina. W. V., Cooper. D., Frenck, R. W. Jr., Hammitt. L. L., Türeci, Ö., Nell, H., Schaefer, A., Ünal, S., Tresnan, D. B., Mather, S., Dormitzer, P. R., Şahin, U., Jansen, K. U., & Gruber, W. C.; C4591001 Clinical Trial Group (2020). Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. New England Journal of Medicine 383(27), 2603-2615. https://doi.org/10.1056/NEJMoa2034577

Poli, K., Poli, S., & Ziemann, U. (2022). Multiple autoimmune syndromes including acute disseminated encephalomyelitis, myasthenia gravis, and thyroiditis following messenger ribonucleic acid-based COVID-19 vaccination: a case report. Frontiers in Neurology 13, 913515. https://doi.org/10.3389/fneur.2022.913515

Polykretis, P. & McCullough, P. A. (2022). Rational harm‐benefit assessments by age group are required for continued COVID‐19 vaccination. Scandinavian Journal of Immunology e13242. https://doi.org/10.1111/sji.13242

Polykretis, P., Donzelli, A., Lindsay, J. C., Wiseman, D., Kyriakopoulos, A. M., Mörz, M., Bellavite, P., Fukushima, M., Seneff, S., & McCullough, P. A. (2023). Autoimmune inflammatory reactions triggered by the COVID-19 genetic vaccines in terminally differentiated tissues. Autoimmunity 56, 2259123. https://doi.org/10.1080/08916934.2023.2259123

Pozdnyakova, V., Weber, B., Cheng, S., Ebinger, J. E. (2022). Review of immunologic manifestations of COVID-19 infection and vaccination. Cardiology Clinics 40(3), 301-308. https://doi.org/10.1016/j.ccl.2022.03.006

Prasad, V. (2023). Preprint servers have repeatedly censored our work on COVID-19 policy. Sensible Medicine [Substack]. 7/27/2023. Accessed: April 10: https://www.sensible-med.com/p/preprint-servers-have-repeatedly

Qi, F., Carbone, M., Yang, H., & Gaudino, G. (2011). Simian virus 40 transformation, malignant mesothelioma and brain tumors. Expert Review of Respiratory Medicine 5, 683-97. https://doi.org/10.1586/ers.11.51

Qin, Z., Bouteau, A., Herbst, C., & Igyártó, B. Z. (2022). Pre-exposure to mRNA-LNP inhibits adaptive immune responses and alters innate immune fitness in an inheritable fashion. PLoS Pathog 18(9), e1010830. https://doi.org/10.1371/journal.ppat.1010830

Rancourt, D. G., Baudin, M., & Mercier, J. (2022). COVID-Period mass vaccination campaign and public health disaster in the USA from age/state-resolved all-cause mortality by time, age-resolved vaccine delivery by time, and socio-geo-economic data. ResearchGate. https://doi.org/10.13140/RG.2.2.12688.28164

Rao, E., Grover, P., & Zhang, H. (2022). Thrombosis after SARS-CoV2 infection or COVID-19 vaccination: will a nonpathologic anti-PF4 antibody be a solution?-A narrative review. Journal of Bio-X Research 5(3), 97-103. https://doi.org/10.1097/JBR.0000000000000125

Raveendran, A. V., Jayadevan, R., & Sashidharan, S. (2021). Long COVID: an overview. Diabetology & Metabolic Syndrome 15, 869-75. https://doi.org/10.1016/j.dsx.2021.04.007

Ravi, S,, Alencar, A.,M. Jr., Arakelyan., J., Xu., W., Stauber., R., Wang., C.,I., et al. (2022) An Update to Hallmarks of Cancer. Cureus. 14(5):e24803. https://doi.org/10.7759/cureus.24803

Rechavi, Y., Shashar, M., Lellouche, J., Yana, M., Yakubovich, D., & Sharon, N. (2021). Occurrence of BNT162b2 vaccine adverse reactions is associated with enhanced SARS-CoV-2 IgG antibody response. Vaccines 9, 977. https://doi.org/10.3390/vaccines9090977

Rees, A.R. (2022). Viruses, vaccines and cardiovascular effects. Br J Cardiol 29, 16. https://doi.org/10.5837/bjc.2022.016

Rodriguez, A. (2022). Pfizer-BioNTech submits new COVID vaccine booster targeting BA.5 to the FDA for authorization. Accessed: October 16, 2023: https://www.usatoday.com/story/news/health/2022/08/22/pfizer-covid-booster-omicron-submitted-fda-emergency-authorization/7844312001/

Rodríguez, Y., Rojas, M., Beltrán, S., Polo, F., Camacho-Domínguez, L., Morales, S. D., Gershwin, M. E., & Anaya, J. M. (2022). Autoimmune and autoinflammatory conditions after COVID-19 vaccination. New case reports and updated literature review. Journal of Autoimmunity 132, 102898. https://doi.org/10.1016/j.jaut.2022.102898

Rogers, C., Thorp, J. A., Cosgrove, K., & McCullough, P. A. (2024). COVID-19 vaccines: A risk factor for cerebral thrombotic syndromes. Preprints 2024061236. https://doi.org/10.20944/preprints202406.1236.v2

Roh, J. H., Jung, I., Suh, Y., & Kim, M.-H. (2024). A potential association between COVID-19 vaccination and development of Alzheimer’s disease, QJM: An International Journal of Medicine, hcae103, https://doi.org/10.1093/qjmed/hcae103

Rojas, M., Herrán, M., Ramírez-Santana, C., Leung, P. S. C., Anaya, J. M., Ridgway, W. M., & Gershwin, M. E. (2023). Molecular mimicry and autoimmunity in the time of COVID-19. Journal of Autoimmunity 139, 103070. https://doi.org/10.1016/j.jaut.2023.103070

Rosa, S.S., Prazeres, D.M.F., Azevedo, A.M., Marques, M.P.C. (2021) mRNA Vaccines Manufacturing: Challenges and Bottlenecks. Vaccine. 39:2190–2200. https://doi.org/10.1016/j.vaccine.2021.03.038

Rose, J. (2023). That substack about N1-methylpseudouridines and frameshifting. Accessed: December 12, 2023: https://jessicar.substack.com/p/that-substack-about-n1-methylpseudouridines

Rose, J. (2023b). VAERS reports contradict claim of no AEs in frameshifting context. Accessed: December 16, 2023: https://jessicar.substack.com/p/vaers-reports-contradict-claim-of

Rose, J., Hulscher, N., & McCullough, P. A. (2024). Determinants of COVID-19 vaccine-induced myocarditis. Ther Adv Drug Saf 15, 20420986241226566. https://doi.org/10.1177/20420986241226566

Roser, M. (2020). Why is life expectancy in the US lower than in other rich countries? OurWorldInData.org. Accessed: December 13, 2023: https://ourworldindata.org/us-life-expectancy-low

Rotondo, J. C., Mazzoni, E., Bononi, I., Tognon, M., & Martini, F. (2019). Association between simian virus 40 and human tumors. Front Oncol 9, 670. https://doi.org/10.3389/fonc.2019.00670

Rubio-Casillas, A., Cowley, D., Raszek, M., Uversky, V. N., & Redwan, E. M. (2024). Review: N1-methyl-pseudouridine (m1Ψ): Friend or foe of cancer? International Journal of Biological Macromolecules 267(p t 1), 131427. https://doi.org/10.1016/j.ijbiomac.2024.131427

Rzymski, P., Pazgan-Simon, M., Simon, K., Łapiński, T., Zarębska-Michaluk, D., et al. (2021) Clinical Characteristics of Hospitalized COVID-19 Patients Who Received at Least One Dose of COVID-19 Vaccine. Vaccines (Basel) 9(7), 781. https://doi.org/10.3390/vaccines9070781

Sadat Larijani, M., Sorouri, R., Eybpoosh, S., Doroud, D., Moradi, L., Ahmadinezhad, M., Bavand, A., Ashrafian, F., Tajmehrabi Namini, P., Zali, M. & Ramezani, A. (2023). Assessment of long-term adverse events regarding different COVID-19 vaccine regimens within an 18-month follow-up study. Pathogens and Disease 81, ftad010. https://doi.org/10.1093/femspd/ftad010

Sales-Conniff, A., Encalada, G., Patel, S., Bhandary, M., Al-Takrouri F., Heller, L. (2022). Poly(I:C) transfection induces a pro-inflammatory cascade in murine mammary carcinoma and fibrosarcoma cells. RNA Biology. 19(1):841-851. https://doi.org/10.1080/15476286.2022.2084861

Salmon, D. A., Orenstein, W. A., Plotkin, S. A., & Chen, R. T. (2024). Funding postauthorization vaccine-safety science. 391(2), 102-105. https://doi.org/10.1056/NEJMp2402379

Samanovic, M. I., Cornelius, A. R., Gray-Gaillard, S. L., Allen, J. R., Karmacharya, T., Wilson, J. P., Hyman, S. W., Tuen, M., Koralov, S. B., Mulligan, M. J,, & Herati, R. S. (2021). Robust immune responses after one dose of BNT162b2 modmRNA vaccine dose in SARS-CoV-2 experienced individuals. medRxiv Preprint. https://doi.org/10.1101/2021.02.07.21251311

Sanning, S. (2022). Pathology Conference: Vaccine-induced spike protein production in the brain, organs etc., now proven [Webpage in German]. Accessed: October 16, 2023: https://report24.news/pathologie-konferenz-impfinduzierte-spike-produktion-in-gehirn-u-a-organen-nun-erwiesen/

Santiago, D. (2022a). A partial answer to the question posed by David A. Hughes, PhD, in the article: “What is in the so-called COVID-19 ‘vaccines’? Part 1: evidence of a global crime against humanity.” International Journal of Vaccine Theory, Practice, and Research, 2(2), 587–594. https://doi.org/10.56098/ijvtpr.v2i2.56

Santiago, D. (2022b). Playing Russian Roulette with every COVID-19 injection: The deadly global game. International Journal of Vaccine Theory, Practice, and Research, 2(2), 619–650. https://doi.org/10.56098/ijvtpr.v2i2.36

Santiago, D., & Oller, J. W. (2023). Abnormal clots and all-cause mortality during the pandemic experiment: Five doses of COVID-19 vaccine are evidently lethal to nearly all Medicare participants. International Journal of Vaccine Theory, Practice, and Research, 3(1), 847–890. https://doi.org/10.56098/ijvtpr.v3i1.73

Sattar, S., Kabat, J., Jerome, K., Feldmann, F., Bailey, K. & Mehedi, M. (2023). Nuclear translocation of spike mRNA and protein is a novel pathogenic feature of SARS-CoV-2. Frontiers in Microbiology 14, 1073789. https://doi.org/10.3389/fmicb.2023.1073789

Schmeling, M., Manniche, V. & Hansen, P. R. (2023). Batch-dependent safety of the BNT162b2 mRNA COVID-19 vaccine. European Journal of Clinical Investigation 53, e13998. https://doi.org/10.1111/eci.13998

Scholkmann, F. & May, C. A. (2023). COVID-19, post-acute COVID-19 syndrome (p ACS, "long COVID") and post- COVID-19 vaccination syndrome (p CVS, "post-COVID vac-syndrome"): similarities and differences. Pathology - Research and Practice 246, 154497. https://doi.org/10.1016/j.prp.2023.154497

Schönborn, L., Seck, S. E., Thiele, T., Kaderali, L., Hoffmann, T., Hlinka, A., Lindhoff-Last, E., Völker, U., Selleng, K., Buoninfante, A., Cavaleri, M., & Greinacher, A. (2023). Long-term outcome in vaccine-induced immune thrombocytopenia and thrombosis. Journal of Thrombosis and Haemostasis 21(9), 2519-2527. https://doi.org/10.1016/j.jtha.2023.06.027

Schreckenberg, R., Woitasky, N., Itani, N., Czech, L., Ferdinandy, P., & Schulz, R. (2024). Cardiac side effects of RNA-based SARS-CoV-2 vaccines: hidden cardiotoxic effects of mRNA-1273 and BNT162b2 on ventricular myocyte function and structure. Br J Pharmacol 181, 345-61. https://doi.org/10.1111/bph.16262

Schwab, C., Domke, L. M., Hartmann, L., Stenzinger, A., Longerich, T., & Schirmacher, P. (2023). Autopsy-based histopathological characterization of myocarditis after anti-SARS-CoV-2-vaccination. Clinical Research in Cardiology 112(3), 431-440. https://doi.org/10.1007/s00392-022-02129-5

See, I., Su, J. R., Lale, A., Woo, E. J., Guh, A. Y., & Shimabukuro, T. T. (2021). US case reports of cerebral venous sinus thrombosis with thrombocytopenia after Ad26.COV2.S vaccination, March 2 to April 21, 2021. JAMA 325(24), 2448-2456. https://doi.org/10.1001/jama.2021.7517

Segalla, G. (2023a). Adjuvant Activity and Toxicological Risks of Lipid Nanoparticles Contained in the COVID 19 “mRNA Vaccines.” International Journal of Vaccine Theory, Practice, and Research, 3(1), 1085–1102. https://doi.org/10.56098/z1ydjm29

Segalla, G. (2023b). Apparent Cytotoxicity and Intrinsic Cytotoxicity of Lipid Nanomaterials Contained in a COVID-19 mRNA Vaccine. International Journal of Vaccine Theory, Practice, and Research, 3(1), 957–972. https://doi.org/10.56098/ijvtpr.v3i1.84

Segalla, G. (2023c). Chemical-physical criticality and toxicological potential of lipid nanomaterials contained in a COVID-19 mRNA vaccine. International Journal of Vaccine Theory, Practice, and Research, 3(1), 787–817. https://doi.org/10.56098/ijvtpr.v3i1.68

Segalla, G. (Director). (2023d). Pandora’s vaccine. March 12. https://vimeo.com/807279310

Sekizawa, A., Hashimoto, K., Kobayashi, S., Kozono, S., Kobayashi, T., Kawamura, Y., Kimata, M., Fujita, N., Ono, Y., Obuchi, Y., & Tanaka, Y. (2022). Rapid progression of marginal zone B-cell lymphoma after COVID-19 vaccination (BNT162b2): A case report. Frontiers in Medicine (Lausanne) 9:963393. https://doi.org/10.3389/fmed.2022.963393

Sekulovski, M., Mileva, N., Vasilev, G. V., Miteva, D., Gulinac, M., Peshevska-Sekulovska, M., Chervenkov, L., Batselova, H., Vasilev, G. H., Tomov, L., Lazova, S., Vassilev, D., & Velikova, T. (2023). Blood coagulation and thrombotic disorders following SARS-CoV-2 infection and COVID-19 vaccination. Biomedicines 11(10), 2813. https://doi.org/10.3390/biomedicines11102813

Sellaturay, P., Nasser, S., & Ewan, P. (2021). Polyethylene glycol-induced systemic allergic reactions (anaphylaxis). The Journal of Allergy and Clinical Immunology: In Practice 9, 670-5. https://doi.org/10.1016/j.jaip.2020.09.029

Seneff, S., Kyriakopoulos, A. M., Nigh, G., & McCullough, P. A. (2023). A potential role of the spike protein in neurodegenerative diseases: a narrative review. Cureus 15, e34872. https://doi.org/10.7759/cureus.34872

Seneff, S., Nigh, G., Kyriakopoulos, A. M., & McCullough, P. A. (2023b). Response to Barriere et al. Food Chem Toxicol 178, 113898. https://doi.org/10.1016/j.fct.2023.113898

Seneff, S., Nigh, G., Kyriakopoulos, A. M., & McCullough, P.A. (2022). Innate immune suppression by SARS-CoV-2 modmRNA vaccinations: The role of G-quadruplexes, exosomes, and microRNAs. Food and Chemical Toxicology 164, 113008. https://doi.org/10.1016/j.fct.2022.113008

Šenigl, F., Soikkeli, A., Prost, S., Schatz, D.G., Slavková, M., Hejnar, J., Alinikula, J. (2024) The SV40 virus enhancer functions as a somatic hypermutation-targeting element with potential oncogenic activity. bioRxiv [Preprint]. 2024.01.09.574829. https://doi.org/10.1101/2024.01.09.574829

Sennfält, S., Norrving, B., Petersson, J., & Ullberg, T. (2019). Long-term survival and function after stroke: a longitudinal observational study from the Swedish stroke register. Stroke 50, 53-61. https://doi.org/10.1161/STROKEAHA.118.022913

Seo, J., Lee, J., Kim, S., Lee, M., & Yang, H. (2022). Lipid Polysaccharides have a Detrimental Effect on the Function of the Ovaries and Uterus in Mice through Increased Pro-Inflammatory Cytokines. Development & Reproduction 26(4), 135-144. https://doi.org/10.12717/DR.2022.26.4.135

Sergi, C. M. (2023). COVID-19 vaccination-related autoimmune hepatitis-a perspective. Frontiers in Pharmacology 14, 1190367. https://doi.org/10.3389/fphar.2023.1190367

Sessa, F., Salerno, M., Esposito, M., Di Nunno, N., Zamboni, P., Pomara, & C. (2021). Autopsy findings and causality relationship between death and COVID-19 vaccination: a systematic review. Journal of Clinical Medicine 10(24), 5876. https://doi.org/10.3390/jcm10245876

SeyedAlinaghi S, Karimi A, Pashaei Z, Afzalian A, Mirzapour P, Ghorbanzadeh K, Ghasemzadeh A, Dashti M, Nazarian N, Vahedi F, Tantuoyir MM, Shamsabadi A, Dadras O, Mehraeen E. Safety and Adverse Events Related to COVID-19 mRNA Vaccines; a Systematic Review. Arch Acad Emerg Med. 2022;10(1):e41. https://doi.org/10.22037/aaem.v10i1.1597 Shabu, A., & Nishtala, P. S. (2023). Analysis of the adverse events following the mRNA-1273 COVID-19 vaccine. Expert Review of Vaccines 22(1), 801–812. https://doi.org/10.1080/14760584.2023.2260477

Shafiee, A., Amini, M. J., Arabzadeh Bahri, R., Jafarabady, K., Salehi, S. A., Hajishah, H., & Mozhgani, S. H. (2023). Herpesviruses reactivation following COVID-19 vaccination: A systematic review and meta-analysis. European Journal of Medical Research 28(1), 278. https://doi.org/10.1186/s40001-023-01238-9

Shafiq A, Salameh MA, Laswi I, Mohammed I, Mhaimeed O, Mhaimeed N, et al. Neurological Immune-Related Adverse Events After COVID-19 Vaccination: A Systematic Review. Journal of Clinical Pharmacology. 2022;62(3):291-303. https://doi.org:10.1002/jcph.2017

Shaw, C. A. (2020). Weaponizing the peer review system. International Journal of Vaccine Theory, Practice, and Research, 1(1), 11–26. https://doi.org/10.56098/ijvtpr.v1i1.1

Shaw, C. A. (2021a). Dispatches from the Vaccine Wars. Skyhorse Publishing. https://www.simonandschuster.com/books/Dispatches-from-the-Vaccine-Wars/Christopher-A-Shaw/Children-s-Health-Defense/9781510758506

Shaw, C. A. (2021b). The Age of COVID-19: Fear, Loathing, and the “New Normal.” International Journal of Vaccine Theory, Practice, and Research, 1(2), 98–142. https://doi.org/10.56098/ijvtpr.v1i2.11

Shimabukuro, T. T., Kim, S. Y., Myers, T. R., Moro, P. L., Oduyebo, T., Panagiotakopoulos, L., Marquez, P. L., Olson, C. K., Liu, R., Chang, K. T., Ellington, S. R., Burkel, V. K., Smoots, A. N., Green, C. J., Licata, C., Zhang, B. C., Alimchandani, M., Mba-Jonas, A., Martin, S. W., Gee, J. M., & Meaney-Delman, D. M.; CDC V-Safe COVID-19 Pregnancy Registry Team. (2021). Preliminary findings of mRNA COVID-19 vaccine safety in pregnant persons. The New England Journal of Medicine 384(24), 2273-2282. https://doi.org/10.1056/NEJMoa2104983. Erratum in: New England Journal of Medicine 2021 Oct 14;385(16):1536. https://doi.org/10.1056/NEJMx210016

Shimohata, T. (2022). Neuro-COVID-19. Clinical & Experimental Neuroimmunology. 13(1), 17-23. https://doi.org/10.1111/cen3.12676

Shir-Raz, Y., Elisha, E., Martin, B., Ronel, N., & Guetzkow, J. (2022). Censorship and suppression of COVID-19 heterodoxy: tactics and counter-tactics. Minerva 1-27. https://doi.org/10.1007/s11024-022-09479-4

Shiravi, A. A., Ardekani, A., Sheikhbahaei, E., & Heshmat-Ghahdarijani, K. (2022). Cardiovascular complications of SARS-CoV-2 vaccines: an overview. Cardiology and Therapy 11, 13-21. https://doi.org/10.1007/s40119-021-00248-0

Shoaibi, A., Lloyd, P. C., Wong, H. L., Clarke, T. C., Chillarige, Y., Do, R., Hu, M., Jiao, Y., Kwist, A., Lindaas, A., Matuska, K., McEvoy, R., Ondari, M., Parulekar, S., Shi, X., Wang, J., Lu, Y., Obidi, J., Zhou, C. K., Kelman, J. A., Forshee, R. A., & Anderson, S. A. (2023). Evaluation of potential adverse events following COVID-19 mRNA vaccination among adults aged 65 years and older: Two self-controlled studies in the U.S. Vaccine 41(32), 4666-4678. https://doi.org/10.1016/j.vaccine.2023.06.014

Shrestha, N. K., Burke, P. C., Nowacki, A. S., & Gordon, S. M. (2023b). Risk of coronavirus disease 2019 (COVID-19) among those up-to-date and not up-to-date on COVID-19 vaccination by US CDC criteria. PLoS One 18, e0293449. https://doi.org/10.1371/journal.pone.0293449

Shrestha, N. K., Burke, P. C., Nowacki, A. S., & Gordon, S. M. (2024). Effectiveness of the 2023-2024 formulation of the Coronavirus Disease 2019 mRNA vaccine against the JN.1 variant. medRxiv preprint. https://doi.org/10.1101/2024.04.27.24306378

Shrestha, N. K., Burke, P. C., Nowacki, A. S., Simon, J. F., Hagen, A., & Gordon, S. M. (2023). Effectiveness of the coronavirus disease 2019 bivalent vaccine. Open Forum Infectious Diseases 10, ofad209. https://doi.org/10.1093/ofid/ofad209

Shumnalieva, R., Ravichandran, N., Hannah, J., Javaid, M., Darooka, N., Roy, D., et al. (2024). COVAD Study Group. Characteristics of emerging new autoimmune diseases after COVID-19 vaccination: a sub-study by the COVAD group. International Journal of Rheumatic Diseases. 27(5), e15178. https://doi.org/10.1111/1756-185X.15178

Singer, M. E., Taub, I. B., & Kaelber, D. C. (2022). Risk of myocarditis from COVID-19 infection in people under age 20: a population-based analysis. medRxiv Preprint. https://doi.org/10.1101/2021.07.23.21260998

Singh, N. & Singh, A. B. (2020). S2 subunit of SARS-nCoV-2 interacts with tumor suppressor protein p53 and BRCA: an in silico study. Translational Oncology 13(10), 100814. https://doi.org/10.1016/j.tranon.2020.100814

Sodagar, A., Javed, R., Tahir, H., Razak, S. I. A., Shakir, M., Naeem, M., Yusof, A. H. A., Sagadevan, S., Hazafa, A., Uddin, J., Khan, A., & Al-Harrasi, A. (2022). Pathological features and neuroinflammatory mechanisms of SARS-CoV-2 in the brain and potential therapeutic approaches. Biomolecules. 12(7), 971. https://doi.org/10.3390/biom12070971

Soegiarto G., & D. Purnomosari (2023). Challenges in the Vaccination of the Elderly and Strategies for Improvement. Pathophysiology. 30(2):155-173. https://doi.org/10.3390/pathophysiology30020014

SOPP 8508.2. (2008). Procedures for the Vaccine Safety Team. May 9, 2008. https://www.fda.gov/media/109244/download

Speicher, D. J., Rose, J., Gutschi, L. M., Wiseman, D. M., & McKernan, K. (2023). DNA fragments detected in monovalent and bivalent Pfizer/BioNTech and Moderna modRNA COVID-19 vaccines from Ontario, Canada: exploratory dose response relationship with serious adverse events. DSFPreprints. https://doi.org/10.31219/osf.io/mjc97

Sriwastava, S., Sharma, K., Khalid, S. H., Bhansali, S., Shrestha, A. K., Elkhooly, M., Srivastava, S., Khan, E., Jaiswal, S., & Wen, S. (2022). COVID-19 vaccination and neurological manifestations: a review of case reports and case series. Brain Sciences. 12(3), 407. https://doi.org/10.3390/brainsci12030407

Starfield, B. (2000). Is US health really the best in the world? JAMA, 284(4), 483–485. https://doi.org/10.1001/jama.284.4.483

Strid, P., Abara, W. E., Clark, E., Moro, P. L., Olson, C. K., & Gee, J. (2024). Postmenopausal bleeding after coronavirus disease 2019 (COVID-19) vaccination: Vaccine Adverse Event Reporting System. Obstetrics & Gynecology 230(1), 71.E1-71.E14. https://doi.org/10.1097/AOG.0000000000005615

Stroobandt, S. & Stroobandt, R. (2021). Data of the COVID-19 mRNA-vaccine V-safe surveillance system and pregnancy registry reveals poor embryonic and second trimester fetal survival rate. Comment on Stuckelberger et al. SARS-CoV-2 vaccine willingness among pregnant and breastfeeding women during the first pandemic wave: A cross-sectional study in switzerland. Viruses 2021, 13, 1199. Viruses 13, 1199. Viruses, 2021, 13, 1545. https://doi.org/10.3390/v13081545

Stuckelberger, S., Favre, G., Ceulemans, M., Gerbier, E., Lambelet, V., Stojanov, M., Winterfeld, U., Baud, D., Panchaud, A., & Pomar, L. (2021). Current data on COVID-19 mRNA-vaccine safety during pregnancy might be subject to selection bias. Reply to Stroobandt, S.; Stroobandt, R. Data of the COVID-19 mRNA-vaccine V-safe surveillance system and pregnancy registry reveals poor embryonic and second trimester fetal survival rate. Comment on "Stuckelberger et al. SARS-CoV-2 vaccine willingness among pregnant and breastfeeding women during the first pandemic wave: A cross-sectional study in Switzerland. Viruses 2021, 13, 1199". Viruses 13(8), 1546. https://doi.org/10.3390/v13081546

Sugiyama A., Kurisu A., Nagashima S., Hando K., Saipova K., Akhmedova S., Abe K., Imada H., Hussain M.R.A., Ouoba S., et al. (2022). Seroepidemiological study of factors affecting anti-spike IgG antibody titers after a two-dose MRNA COVID-19 vaccination in 3744 healthy japanese volunteers. Scientific Reports 12, 16294. https://doi.org/10.1038/s41598-022-20747-x

Sun, H. (2022). Approximation and evaluation of the spontaneous abortion rate following COVID-19 vaccination in pregnancy. American Journal of Obstetrics & Gynecology 4(1), 100510. https://doi.org/10.1016/j.ajogmf.2021.100510

Syenina, A., Gan, E. S., Toh, J. Z. N., de Alwis, R., Lin, L. Z., Tham, C. Y. L., Yee, J. X., Leong, Y. S., Sam, H., Cheong, C., Teh, Y. E., Wee, I. L. E., Ng, D. H. L., Chan, K. R., Sim, J. X. Y., Kalimuddin, S., Ong, E. Z., Low, J. G., & Ooi, E. E. (2022). Adverse effects following anti-COVID-19 vaccination with mRNA-based BNT162b2 are alleviated by altering the route of administration and correlate with baseline enrichment of T and NK cell genes. PLoS Biology 20(5), e3001643. https://doi.org/10.1371/journal.pbio.3001643

Tachita, T., Takahata, T., Yamashita, S., Ebina, T., Kamata, K., Yamagata, K., Tamai,Y., & Sakuraba, H. (2023). Newly diagnosed extranodal NK/T-cell lymphoma, nasal type, at the injected left arm after BNT162b2 mRNA COVID-19 vaccination. International Journal of Hematology 118(4), 503-507. https://doi.org/10.1007/s12185-023-03607-w

Takeuchi, M., Higa, Y., Esaki, A., Nabeshima, Y., & Nakazono, A. (2021). Does reactogenicity after a second injection of the BNT162b2 vaccine predict spike IgG antibody levels in healthy Japanese subjects? PLoS ONE 16, e0257668. https://doi.org/10.1371/journal.pone.0257668

Talotta, R. (2021). Do COVID-19 RNA-based vaccines put at risk of immune-mediated diseases? In reply to "potential antigenic cross-reactivity between SARS-CoV-2 and human tissue with a possible link to an increase in autoimmune diseases". Clinical Immunology 224, 108665. https://doi.org/10.1016/j.clim.2021.108665

Tanaka, A., Kawaguchi, T., Imadome, K. I., & Hara, S. (2023). [Epstein-Barr virus-associated lymphoproliferative disorders after BNT162b2 mRNA COVID-19 vaccination]. Rinsho Ketsueki 64(4), 277-282. Japanese. https://doi.org/10.11406/rinketsu.64.277

Tansey, M. G., Wallings, R. L., Houser, M. C., Herrick, M. K., Keating, C. E., & Joers, V. (2022). Inflammation and immune dysfunction in Parkinson disease. Nature Reviews Immunology. 22(11), 657-673. https://doi.org/10.1038/s41577-022-00684-6

Thakur, S., Dhapola, R., Sarma, P., Medhi, B., & Reddy, D. H. (2023). Neuroinflammation in Alzheimer's Disease: Current progress in molecular signaling and therapeutics. Inflammation. 46(1), 1-17. https://doi.org/10.1007/s10753-022-01721-1

The Vigilant Fox (2023). Edward Dowd presents irrefutable evidence vaccine mandates killed & disabled countless americans. Accessed: July 7, 2023: https://dailyclout.io/edward-dowd-presents-irrefutable-evidence-vaccine-mandates-killed-disabled-countless-americans/

Thomas, M. R. & Scully, M. (2022). Clinical features of thrombosis and bleeding in COVID-19. Blood 140(3), 184-195. https://doi.org/10.1182/blood.2021012247

Thorp, J. A., Rogers, C., Deskevich, M. P., Tankersley, S., Benavides, A., Redshaw, M. D., & McCullough, P. A. (2022). COVID-19 vaccines: The impact on pregnancy outcomes and menstrual function. Preprints 2022, 2022090430. https://doi.org/10.20944/preprints202209.0430.v1

Tinari, S. (2021). The EMA covid-19 data leak, and what it tells us about mRNA instability. BMJ. 372, n627. https://doi.org/10.1136/bmj.n627 To, K. K. W. & Cho, W. C. S. (2021). An overview of rational design of mRNA-based therapeutics and vaccines. Expert Opinion on Drug Discovery 16(11), 1307-1317. https://doi.org/10.1080/17460441.2021.1935859

Tondo, G., Virgilio, E., Naldi, A., Bianchi, A., & Comi, C. (2022). Safety of COVID-19 vaccines: spotlight on neurological complications. Life (Basel) 12(9), 1338. https://doi.org/10.3390/life12091338

Tokumasu, K., Fujita-Yamashita, M., Sunada, N., Sakurada, Y., Yamamoto, K., Nakano, Y., Matsuda, Y., Otsuka, Y., Hasegawa, T., Hagiya, H., Honda, H., & Otsuka, F. (2023). Characteristics of persistent symptoms manifested after SARS-CoV-2 vaccination: An observational retrospective study in a specialized clinic for vaccination-related adverse events. Vaccines (Basel) 11(11), 1661. https://doi.org/10.3390/vaccines11111661

Trougakos, I.P., Terpos, E., Alexopoulos, H., Politou, M., Paraskevis, D., Scorilas, A., Kastritis, E., Andreakos, E., & Dimopoulos, M. A. (2022). Adverse effects of COVID-19 modmRNA vaccines: the spike hypothesis. Trends in Molecular Medicine 28(7), 542-554. https://doi.org/10.1016/j.molmed.2022.04.007

Tsilingiris, D., Vallianou, N. G., Karampela, I., & Dalamaga, M. (2021). Vaccine induced thrombotic thrombocytopenia: The shady chapter of a success story. Metabolism Open 11, 100101. https://doi.org/10.1016/j.metop.2021.100101

Turner, J. S., Kim, W., Kalaidina, E., Goss, C. W., Rauseo, A. M., Schmitz, A. J., et al. (2021). SARS-CoV-2 infection induces long-lived bone marrow plasma cells in humans. Nature 595(7867), 421-425. https://doi.org/10.1038/s41586-021-03647-4

U.S. Food and Drug Administration. (2021). Initial results of near real-time safety monitoring COVID-19 vaccines. White Oak, MD. https://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/initial-results-near-real-time-safety-monitoring-covid-19-vaccines-persons-aged-65-years-and-older

UK Health Security Agency. (2022). COVID-19 Vaccine Surveillance Report, Week 8 Feb. 24, 2022. https://assets.publishing.service.gov.uk/media/621c91c0d3bf7f4f04b2b648/Vaccine_surveillance_report_-_week-8.pdf

Urdaneta, V., Esposito, D. B., Dharia, P., Moraga, M. S., Anteyi, K., Oduyebo-Omotosho, T., Rossi, M., Burton, P., Vega, M. J., Dawson, R., & Straus, W. (2024). Global safety assessment of adverse events of special interest following 2 years of use and 772 million administered doses of mRNA-1273. Open Forum Infectious Diseases 11(3), ofae067. https://doi.org/10.1093/ofid/ofae067

Uversky, V. N., Redwan, E. M., Makis, W, & Rubio-Casillas, A. (2023). IgG4 antibodies induced by repeated vaccination may generate immune tolerance to the sars-CoV-2 spike protein. Vaccines (Basel) 11(5), 991. https://doi.org/10.3390/vaccines11050991

Uwamino, Y., Kurafuji, T., Sato, Y., Tomita, Y., Shibata, A., Tanabe, A., et al. (2022). Young age, female sex, and presence of systemic adverse reactions are associated with high post-vaccination antibody titer after two doses of BNT162b2 mRNA SARS-CoV-2 vaccination: an observational study of 646 Japanese healthcare workers and university staff. Vaccine 40, 1019–1025. https://doi.org/10.1016/j.vaccine.2022.01.002

VAERS (2024). Vaccine adverse event reporting system. n.d. https://www.vaers.hhs.gov

Valera-Rubio, M. M., Sierra-Torres, M. I., Castillejo García, R. R., Cordero-Ramos, J. J., López-Márquez, M. R., Cruz-Salgado, Ó. O., & Calleja-Hernández, M. Á. M. (2022). Adverse events reported after administration of BNT162b2 and mRNA-1273 COVID-19 vaccines among hospital workers: a cross-sectional survey-based study in a Spanish hospital. Expert Review of Vaccines 21, 533-40. https://doi.org/10.1080/14760584.2022.2022478

Vallée, A. (2022). Neuroinflammation in Schizophrenia: The key role of the WNT/β-catenin pathway. International Journal of Molecular Sciences. 23(5), 2810. https://doi.org/10.3390/ijms23052810

Vanderlugt, C. J. & Miller, S. D. (1996). Epitope spreading. Current Opinion in Immunology 8(6), 831-6. https://doi.org/10.1016/s0952-7915(96)80012-4

van Dijk, W. J., Prins, M. L. M., Roukens, A. H. E., Roozen, G. V. T., Roestenberg, M., Visser, L. G., van Hylckama Vlieg, A., & Rosendaal, F. R. (2024). Coagulation and inflammatory response after intramuscular or intradermal mRNA-1273 SARS-CoV-2 vaccine: secondary analysis of a randomized trial. Research and Practice in Thrombosis and Haemostasis 8(3), 102419. https://doi.org/10.1016/j.rpth.2024.102419

Verbeke, R., Lentacker, I., De Smedt, S. C., & Dewitt H. (2019). Three decades of messenger RNA vaccine development. Three decades of messenger RNA vaccine development. Nanotoday 28, 100766. https://doi.org/10.1016/j.nantod.2019.100766

Vilchez, R. A., & Butel, J.S. (2004). Emergent human pathogen simian virus 40 and its role in cancer. Clin Microbiol Rev 17, 495-508. https://doi.org/10.1128/CMR.17.3.495-508.2004

Vilchez, R. A., Kozinetz, C. A., Arrington, A. S., Madden, C. R., & Butel, J. S. (2003). Simian virus 40 in human cancers. The American Journal of Medicine 114, 675-84. https://doi.org/10.1016/s0002-9343(03)00087-1

Villanueva, P., McDonald, E., Croda, J., Croda, M. G., Dalcolmo, M., dos Santos, G., Jardim, B., Lacerda, M., Lynn, D. J., Marshall, H., Oliveira, R. D., Rocha, J., Sawka, A., Val, F., Pittet, L. F., Messina, N. L., & Curtis, N. (2024). Factors influencing adverse events following COVID-19 vaccination. Human Vaccines & Immunotherapeutics 20(1). https://doi.org/10.1080/21645515.2024.2323853

Vogel, G. & Couzin-Frankel, J. (2023). Rare link between coronavirus vaccines and Long COVID-like illness starts to gain acceptance. Science 381, 6653. https://doi.org/10.1126/science.adj5565

Vojdani, A. & Kharrazian, D. (2020). Potential antigenic cross-reactivity between SARS-CoV-2 and human tissue with a possible link to an increase in autoimmune diseases. Clinical Immunology 217, 108480. https://doi.org/10.1016/j.clim.2020.108480

Vojdani, A., Vojdani, E., & Kharrazian, D. (2020). Reaction of human monoclonal antibodies to SARS-CoV-2 proteins with tissue antigens: Implications for autoimmune diseases. Frontiers in Immunology 11, 617089. https://doi.org/10.3389/fimmu.2020.617089

Wagner, R., Hildt, E., Grabski, E., Sun, Y., Meyer, H., Lommel, A., Keller-Stanislawski, B., Müller-Berghaus, J., & Cichutek, K (2021). Accelerated development of COVID-19 vaccines: Technology platforms, benefits, and associated risks. Vaccines (Basel) 9(7), 747. https://doi.org/10.3390/vaccines9070747

Wang, L., Liu, T., Yue, H., Zhang, J., Sheng, Q., Wu, L., et al. (2023a). Clinical characteristics and high risk factors of patients with Omicron variant strain infection in Hebei, China. Frontiers in Cellular and Infection Microbiology 13, 1294904. https://doi.org/10.3389/fcimb

Wang, X., Liu, Y., Li, K., & Hao. Z. (2023b). Roles of p53-Mediated Host-Virus Interaction in Coronavirus Infection. International Journal of Molecular Sciences 24(7), 6371. https://doi.org/10.3390/ijms24076371

Wiedmann, M., Skattør, T., Stray-Pedersen, A., Romundstad, L., Antal, E. A., Marthinsen, P. B., Sørvoll, I. H., Leiknes Ernstsen, S., Lund, C. G., Holme, P. A., Johansen, T. O., Brunborg, C., Aamodt, A. H., Schultz, N. H., Skagen, K., & Skjelland, M. (2021). Vaccine induced immune thrombotic thrombocytopenia causing a severe form of cerebral venous thrombosis with high fatality rate: a case series. Frontiers in Neurology 12, 721146. https://doi.org/10.3389/fneur.2021.721146

Willison, A. G., Pawlitzki, M., Lunn, M. P., Willison, H. J., Hartung, H. P., & Meuth, S. G. (2024). SARS-CoV-2 vaccination and neuroimmunological disease: a review. JAMA Neurology 81(2), 179-186. https://doi.org/10.1001/jamaneurol.2023.5208

Wiseman, D. M., Gutschi, L. M., Speicher, D. J., Rose, J., & McKernan, K. (2023). Ribosomal frameshifting and misreading of mRNA in COVID-19 vaccines produces “off-target” proteins and immune responses eliciting safety concerns: Comment on UK study by Mulroney et al. OSFPreprints. https://doi.org/10.31219/osf.io/nt8jh

Wölfel, R., Corman, V. M., Guggemos, W., Seilmaier, M., Zange, S., Müller, M. A., Niemeyer, D., Jones, T. C., Vollmar, P., Rothe, C., Hoelscher, M., Bleicker, T., Brünink, S., Schneider, J., Ehmann, R., Zwirglmaier, K., Drosten, C. & Wendtner, C. (2020). Virological assessment of hospitalized patients with COVID-2019. Nature 581(7809), 465-469. https://doi.org/10.1038/s41586-020-2196-x

Wong, H. L., Hu, M., Zhou, C. K., Lloyd, P. C., Amend, K. L., Beachler, D. C., Secora, A., McMahill-Walraven, C. N., Lu, Y., Wu, Y., Ogilvie, R. P., Reich, C., Djibo, D. A., Wan, Z., Seeger, J. D., Akhtar, S., Jiao, Y., Chillarige, Y., Do, R., Hornberger, J., Obidi, J., Forshee, R., Shoaibi, A., & Anderson, S. A. (2022). Risk of myocarditis and pericarditis after the COVID-19 mRNA vaccination in the USA: a cohort study in claims databases. Lancet 399(10342), 2191-2199. https://doi.org/10.1016/S0140-6736(22)00791-7

Wong, H. L., Tworkoski, E., Ke Zhou, C., Hu, M., Thompson, D., Lufkin, B., Do, R., Feinberg, L., Chillarige, Y., Dimova, R., Lloyd, P. C., MaCurdy, T., Forshee, R. A., Kelman, J. A., Shoaibi, A., & Anderson, S. A. (2023). Surveillance of COVID-19 vaccine safety among elderly persons aged 65 years and older. Vaccine 41(2), 532-539. https://doi.org/10.1016/j.vaccine.2022.11.069

World Council for Health (2023). WCH expert panel finds cancer-promoting DNA contamination in COVID-19 vaccines. Accessed: December 20, 2023: https://worldcouncilforhealth.org/news/news-releases/dna-contamination-covid-19-vaccines/

World Health Organization (2024). Vigiaccess. COVID-19 vaccine. Reported potential side effects. n.d. Available: https://www.vigiaccess.org

Wu, N., Joyal-Desmarais, K., Ribeiro, P.A.B., Vieira, A.M., Stojanovic, J., Sanuade, C., Yip, D., Bacon, S.L (2023) Long-term effectiveness of COVID-19 vaccines against infections, hospitalisations, and mortality in adults: findings from a rapid living systematic evidence synthesis and meta-analysis up to December, 2022. Lancet Respiratory Medicine. 11(5):439-452. https://doi.org/10.1016/S2213-2600(23)00015-2

Wu, X., Xu, K., Zhan, P., Liu, H., Zhang, F., Song, Y., & Lv, T. (2024). Comparative efficacy and safety of COVID-19 vaccines in phase III trials: a network meta-analysis. BMC Infectious Disease 24, 234. https://doi.org/10.1186/s12879-023-08754-3

Wünstel, M. (2020). Reutlingen Autopsy/Histology Study. Side-effects from corona vaccinations [Webpage in German]. Accessed: October 16, 2023: https://corona-blog.net/2022/03/10/reutlinger-autopsie-histologie-studie-nebenwirkungen-und-todesfaelle-durch-die-corona-impfungen/

Wyller, T. B., Kittang, B. R., Ranhoff, A. H., Harg, P., & Myrstad, M. (2021). Nursing home deaths after COVID-19 vaccination. Tidsskr Nor Laegeforen 141. English, Norwegian. https://doi.org/10.4045/tidsskr.21.0383

Yan, M. M., Zhao, H., Li, Z. R., Chow, J. W., Zhang, Q., Qi, Y. P., Wu, S. S., Zhong, M. K., & Qiu, X. Y. (2022). Serious adverse reaction associated with the COVID-19 vaccines of BNT162b2, Ad26.COV2.S, and mRNA-1273: Gaining insight through the VAERS. Frontiers in Pharmacology 13, 921760. https://doi.org/10.3389/fphar.2022.921760

Yang, D., Tian, J., Shen, C., & Li, Q. (2024). An overview and single-arm meta-analysis of immune-mediated adverse events following COVID-19 vaccination. Frontiers in Pharmacology 15, 1308768. https://doi.org/10.3389/fphar.2024.1308768

Yasmin, F., Najeeb, H., Naeem, U., Moeed, A., Atif, A. R., Asghar, M. S., Nimri, N., Saleem, M., Bandyopadhyay, D., Krittanawong, C., Fadelallah Eljack, M. M., Tahir, M. J., & Waqar, F. (2023). Adverse events following COVID-19 modmRNA vaccines: A systematic review of cardiovascular complication, thrombosis, and thrombocytopenia. Immunity, Inflammation and Disease 11(3), e807. https://doi.org/10.1002/iid3.807

Yong, S. J. & Liu, S. (2022). Proposed subtypes of post-COVID-19 syndrome (or long-COVID) and their respective potential therapies. Reviews in Medical Virology 32, e2315. https://doi.org/10.1002/rmv.2315

Yonker, L. M., Swank, Z., Bartsch, Y. C., Burns, M. D., Kane, A., Boribong, B. P., Davis, J. P., Loiselle, M., Novak, T., Senussi, Y., Cheng, C. A., Burgess, E., Edlow, A. G., Chou, J., Dionne, A., Balaguru, D., Lahoud-Rahme, M., Arditi, M., Julg, B., Randolph, A. G., Alter, G., Fasano, A., & Walt, D. R. (2023). Circulating Spike Protein Detected in Post-COVID-19 modmRNA vaccine Myocarditis. Circulation 147(11), 867-876. https://doi.org/10.1161/CIRCULATIONAHA.122.061025

Yoon, D., Jeon, H.-L., Noh, Y., Choe, Y. J., Choe, S.-A., Jung, J., & Shin, J.-Y. (2023). A nationwide survey of mRNA COVID-19 vaccinee’s experiences on adverse events and its associated factors. Journal of Korean Medical Science 38(22), e170. https://doi.org/10.3346/jkms.2023.38.e170

Yu, C. K., Tsao, S., Ng, C. W., Chua, G. T., Chan, K. L., Shi, J., Chan, Y. Y., Ip, P., Kwan, M. Y., & Cheung, Y. F. (2023). Cardiovascular assessment up to one year after COVID-19 vaccine-associated myocarditis. Circulation 148(5), 436-439. https://doi.org/10.1161/CIRCULATIONAHA.123.064772

Yuniar, C. T., Pratiwi, B., Ihsan, A. F., Laksono, B. T., Risfayanti, I., Fathadina, A., Jeong, Y., & Kim, E. (2022). Adverse events reporting quality of randomized controlled trials of COVID-19 vaccine using the CONSORT criteria for reporting harms: A systematic review. Vaccines (Basel). 10(2), 313. https://doi.org/10.3390/vaccines10020313

Zaiem, A., Ferchichi, K., Lakhoua, G., Kaabi, W., Aouinti, I., Rebii Debbiche, S., Kastalli, S., Kallel, L., Charfi, O., & El Aidli, S. (2023). Autoimmune hepatitis following mRNA COVID-19 vaccine. Thérapie 78(6), 760-761. https://doi.org/10.1016/j.therap.2022.12.014

Zamfir, M. A., Moraru, L., Dobrea, C., Scheau, A. E., Iacob, S., Moldovan, C., Scheau, C., Caruntu, C., & Caruntu, A. (2022). Hematologic Malignancies Diagnosed in the Context of the mRNA COVID-19 Vaccination Campaign: A Report of Two Cases. Medicina (Kaunas) 58(7), 874. https://doi.org/10.3390/medicina58070874

Zhang, J., Cruz-Cosme, R., Zhuang, M. W., Liu, D., Liu, Y., Teng, S., Wang, P. H. & Tang, Q. (2020). A systemic and molecular study of subcellular localization of SARS-CoV-2 proteins. Signal Transduction and Targeted Therapy 5(1):269. https://doi.org/10.1038/s41392-020-00372-8. Erratum in: Signal Transduction and Targeted Therapy 2021; 6(1), 192. https://doi.org/10.1038/s41392-021-00564-w

Zhang, L., Richards, A., Barrasa, M. I., Hughes, S. H., Young, R. A., & Jaenisch, R. (2021). Reverse-transcribed SARS-CoV-2 RNA can integrate into the genome of cultured human cells and can be expressed in patient-derived tissues. Proceedings of the National Academy of Sciences USA 118(21): e2105968118. https://doi.org/10.1073/pnas.2105968118

Zhang, S. & El-Deiry, W.S. (2024). SARS-CoV-2 spike S2 subunit inhibits p53 activation of p21(WAF1), TRAIL Death Receptor DR5 and MDM2 proteins in cancer cells. bioRxiv Preprint. https://doi.org/10.1101/2024.04.12.589252

Zhang, Y. X., Pan, W. Y., & Chen, J. (2019). p53 and its isoforms in DNA double-stranded break repair. J Zhejiang Univ Sci B 20(6), 457-466. https://doi.org/10.1631/jzus.B1900167

Zylo, A. (2023). Senate hearing on dangerous and potentially fatal errors within the methods of vaccine distribution. Accessed: January 17, 2023: https://arvozylo.medium.com/senate-hearing-on-dangerous-and-potentially-fatal-errors-within-the-methods-of-vaccine-distribution-8de70e51b237

Downloads

Published

2024-08-16

How to Cite

COVID-19 Modified mRNA “Vaccines”: Lessons Learned from Clinical Trials, Mass Vaccination, and the Bio-Pharmaceutical Complex, Part 2. (2024). International Journal of Vaccine Theory, Practice, and Research , 3(2), 1275-1344. https://doi.org/10.56098/w66wjg87

Similar Articles

1-10 of 63

You may also start an advanced similarity search for this article.