RT-PCR Test Targeting the Conserved 5'-UTR of SARS-CoV-2 Overcomes Shortcomings of the First WHO-Recommended RT-PCR Test

Authors

  • Ulrike Kämmerer Professor, University Hospital Würzburg
  • Sona Pekova Molecular Diagnostics, PhD
  • Rainer Klement Medical Physicist in Radiation Oncology, PhD in Physics https://orcid.org/0000-0003-1401-4270
  • Rogier Louwen Medical Microbiologist, PhD
  • Pieter Borger Researcher, PhD
  • Klaus Steger Professor Emeritus in Medicine, PhD https://orcid.org/0000-0002-2104-0840

DOI:

https://doi.org/10.56098/ijvtpr.v3i1.71

Keywords:

Charité protocol, COVID-19, next generation sequencing, NGS, RT-PCR, SAES-CoV-2, scientific misconduct, RT-qPCR, PCR, polymerase chain reaction

Abstract

For the first time in medical history, a laboratory assay (RT-PCR) was used as the sole criterion to diagnose a disease (COVID-19) and to define infectivity of a virus (SARS-CoV-2) without rating clinical symptoms and proof of replication-competent virus to justify implementing population-wide, untested interventions. The aims here are (1) to evaluate a robust quantitative RT-PCR (RT-qPCR) protocol that overcomes major concerns raised within the scientific community on the first WHO-recommended RT-qPCR protocol for SARS-CoV-2 sequences, (2) to characterize individual SARS-CoV-2 strains circulating in the Czech Republic from autumn 2020 to spring 2021 applying next generation sequencing and (3) to re-initiate scientific dialogue and return to reason and evidence-based medicine. We present a RT-qPCR test designed for the detection of all SARS-CoV-2 variants known so far without producing false-positives. Based on the genomic mutation profile, we demonstrate that the three individual waves (autumn 2020 to spring 2021) in the Czech Republic were successive, but lacked direct genomic relationship between each other. This became obvious with the omicron variant, which did not reveal direct evolutionary connection to any of the previous SARS-CoV-2 variants. In addition, we provide evidence that neglected principles of good scientific practice resulted not only in the publication of the WHO-recommended Charité RT-qPCR protocol, but also in health-related problems. Unnecessary quarantine of healthy individuals, as well as lockdowns and atrocious collateral damage on societies and economies worldwide due to a high number of false-positive “PCR-cases.” Otherwise, infectious symptomatic individuals were given a false sense of security by false-negative test results, which could lead to COVID-19 clusters. Both our results and literature data confirm that validation of any PCR-based diagnostic test by sequencing is mandatory on a regular basis. To prevent future misconduct, science needs a reality check and must re-initiate the scientific dialogue and liberate itself from political influence and dogma.

Author Biographies

  • Ulrike Kämmerer, Professor, University Hospital Würzburg

    Department of Obstetrics and Gynecology, Research Laboratory, Germany

  • Sona Pekova, Molecular Diagnostics, PhD

    Tilia Laboratories, Laboratory for Molecular Diagnostics, Pchery, Czech Republic

  • Rainer Klement, Medical Physicist in Radiation Oncology, PhD in Physics

    Leopoldina Hospital Schweinfurt, Department of Radiation Oncology, Germany

  • Rogier Louwen, Medical Microbiologist, PhD

    Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands

  • Pieter Borger, Researcher, PhD

    The Independent Research Institute on Information and Origins, Lörrach, Germany

  • Klaus Steger, Professor Emeritus in Medicine, PhD
    Department of Urology, Pediatric Urology, and Andrology, Section Molecular Andrology --- Biomedical Research Center of the Justus-Liebig University, Giessen, Germany

References

Abbasi, K. (2020). COVID-19: politisation, ´corruption´ and suppression of science. British Medical Journal 71m4425. https://doi.org/101136/bmj.m4425.

Amanat, F., Stadlbauer, D., Strohmeier, S. et al. (2020). A serological assay to detect SARS-CoV-2 seroconversion in humans. Nature Medicine 26:1033–1036. https://doi.org/10.1038/s41591-020-0913-5.

Anantharajah, A., Helaers, R., Defour, J.P., Olive, N., Kabera, F., Croonen, L. et al. (2021). How to choose the right real-time RT-PCR primer sets for the SARS-CoV-2 genome detection? Journal of Viological Methods 295:114197. https://doi.org/10.1016/j.jviromet.2021.114197.

Baldassarre, A., Paolini, A., Bruno, S.P., Felli, C., Tozzi, A.E. & Masotti, A. (2020). Potential use of noncoding RNAs and innovative therapeutic strategies to target the 5'-UTR of SARS-CoV-2. Epigenomics 12:1349-1361. https://doi.org/10.2217/epi-2020-0162.

Basile K., Maddocks, S., Kok, J. & Dwyer, D.E. (2020.) Accuracy amidst ambiguity: false positive SARS-CoV-2 nucleic acid tests when COVID-19 prevalence is low. Pathology 52:809-811. https://doi.org/10.1016/j.pathol.2020.09.009.

Berczuk, A.C., Salvatore, S.P., Seshan, S.V., Patel, S.S., Bussel, J.B., Mostyka, M. et al. (2020). COVID-19 pulmonary pathology: a multi-institutional autopsy cohort from Italy and New York City. Modern Pathology 33:2156-2168. https://doi.org/10.1038/s41379-020-00661-1.

Borger, P., Malhotra, B.R., Yeadon, M. et al. (2020). External peer review of the RTPCR test to detect SARS-CoV-2 reveals 10 major scientific flaws at the molecular and methodological level: consequences for false positive results. https://web.archive.org/web/20220122062141/https://cormandrostenreview.com/report/. [Original link https://cormandrostenreview.com/report no longer available].

Braun, J., Loyal, L., Frentsch, M. et al. (2020). SARS-CoV-2-reactive T-cells in healthy donors and patients with COVID-19. Nature 587:270–274. https://doi.org/10.1038/s41586-020-2598-9.

Bruce, E.A., Mills, M.G., Sampoleo, R., Perchetti, G.A., Huang, M.L., Despres, H.W. et al. (2022). Predicting infectivity: comparing four PCR-based assays to detect culturable SARS-CoV-2 in clinical samples. EMBO Molecular Medicine 14:e15290. https://doi.org/10.15252/emmm.202115290.

Bustin, S.A., Benes, V., Garson, J.A., Hellemans, J., Huggett, J., Kubista, M. et al. (2009). The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry 55:611-22. https://doi.org/10.1373/clinchem.2008.112797.

Bustin, S. & Nolan, T. (2017). Talking the talk, but not walking the walk: RTqPCR as a paradigm for the lack of reproducibility in molecular research. European Journal of Clinical Investigation 47:756-774. https://doi.org/10.1111/eci.12801.

Case, J.B., Bailey, A.L., Kim, A.S., Chen, R.E. & Diamond, M.S. (2020). Growth, detection, quantification, and inactivation of SARS-CoV-2. Virology 548:39–48. https://doi.org/10.1016/j.virol.2020.05.015.

CDC (2019a). Interim Guidance for SARS-CoV-2 Testing in non-healthcare workplaces. https://www.cdc.gov/coronavirus/2019-ncov/community/organizations/testing-non-healthcare-workplaces.html.

CDC (2019b). Interim guidance for antigen testing for SARS-CoV-2. https://www.cdc.gov/coronavirus/2019-ncov/lab/resources/antigen-tests-guidelines.html#previous.

CDC (2021c). 2019-novel coronavirus (2019-nCoV) real-time RT-PCR diagnostic panel. For emergency use only. Instructions for use. https://www.fda.gov/media/134922/download.

Cevik, M., Kuppalli, K., Kindrachuk, J. & Peiris, M. (2020). Virology, transmission, and pathogenesis of SARS-CoV-2. British Medical Journal 371:m3862. https://doi.org/10.1136/bmj.m3862.

Cevik, M., Tate, M., Lloyd, O., Maraolo, A.E., Schafers, J. & Ho, A. (2021). SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis. Lancet Microbe 2:e13-e22. https://doi.org/10.1016/S2666-5247(20)30172-5.

Chan, J.F.W., Yip, C.C.Y., To, K.K.W., Tang, T.H.C., Wong, S.C.Y., Leung, K.H. et al. (2020). Improved molecular diagnosis of COVID-19 by the novel, highly sensitive and specific COVID-19-RdRp/Hel real-time reverse transcription-PCR assay validated in vitro and with clinical specimens. Journal of Clinical Microbiology 58;e00310-20. https://doi.org/10.1128/JCM.00310-20.

China CDC. (2020). Laboratory testing for COVID-19. [Original link http://wjw.wuhan.gov.cn/front/web/showDetail/2019123108989 was changed to http://www.chinacdc.cn/en/COVID19/202003/P020200323390321297894.pdf, but neither of those links works at the time of this writing. Therefore, we have made the pdf file available as a separate document at https://doi.org/10.56098/ijvtpr.v3i1.70].

Chomczynski, P. & Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry 162:156-159. https://doi.org/10.1006/abio.1987.9999.

Cockrell, A.S., Beall, A., Yount, B. & Baric, R. (2017) Reverse Genetics of RNA Viruses: Efficient Reverse Genetic Systems for Rapid Genetic Manipulation of Emergent and Preemergent Infectious Coronaviruses. Methods in Molecular Biology 1602, pp59-81, Humana Press.

Cohen, A.N., Kessel, B. & Milgroom, M.G. (2020). Diagnosing SARS-CoV-2 infection: the danger of over-reliance on positive test results. medRxiv Preprint. https://doi.org/10.1101/2020.04.26.20080911.

Corman, V.M., Landt, O., Kaiser, M., Molenkamp, R., Meijer, A., Chu, D.K.W., Bleicker, T., Brünink, S., Schneider, J., Schmidt, M.L., Mulders, D.G.J.C., Haagmans, B.L., van der Veer, B., van den Brink, S., Wijsman, L., Goderski, G., Romette, J.L., Ellis, J., Zambon, M., Peiris, M., Goossens, H., Reusken, C., Koopmans, M.P.G4 & Drosten, C. (2020). Detection of 2019-novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 25:2000045. https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045.

Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. (2020). The species Severe Acute Respiratory Syndrome-related Coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology 5:536–544. https://doi.org/10.1038/s41564-020-0695-z. Preprint from February 11, 2020: https://www.biorxiv.org/content/10.1101/2020.02.07.937862v1.

Doshi, P. (2010). More changing webpages at WHO. Rapid Respons to: WHO is accused of “crying wolf” over swine flu pandemic. British Medical Journal 340:c1904. https://doi.org/10.1136/bmj.c1904.

Editorial Note Eurosurveillance. (3 Dec 2020). https://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2020.25.48.2012031.

EVAg Portal. https://www.european-virus-archive.com/evag-portal?portal_search=SARS-CoV-20272&advanced_ictv_tax_search.

Fauci, A. (30 Dec 2021). https://www.youtube.com/watch?v=bAICMQ1D5F8.

Fields, B.N., Knipe, D.M., Howley, P.M. & Griffin, D.E. (2001). Fields Virology, 4, edition, Lippincott Williams & Wilkins Philadelphia.

Finn, K. & Lucey, B. (2021). Misdiagnosis of SARS-CoV-2: a critical review of the influence of sampling and clinical detection methods. Medical Sciences 9:36. https://doi.org/10.3390/medsci9020036.

Hedges, K. & Lasco, G. (2021). Medical populism and COVID-19 testing. Open Anthropology Research 1:73-86. https://doi.org/10.1515/opan-2020-0109.

Jaafar, R., Aherfi, S., Wurtz, N., Grimaldier, C., Hoang, T.V., Colson, P. et al. (2021). Correlation between 3790 quantitative polymerase chain reaction-positive samples and positive cell cultures, including 1941 severe acute respiratory syndrome coronavirus 2 isolates. Clinical Infectious Diseases 72:e921. https://doi.org/10.1093/cid/ciaa1491.

Jefferson, T., Spencer, E.A., Brassey, J. & Heneghan, C. (2020) Viral cultures for COVID-19 infectious potential assessment - a systematic review. Clinical Infectious Diseases 3:ciaa1764. https://doi.org/10.1093/cid/ciaa1764.

Jiang, S., Shi, Z., Shu, Y., Song, J., Gao, G.F., Tan, W. & Guo, D. (2020). A distinct name is needed for the new coronavirus. The Lancet 395:949. https://doi.org/10.1016/S0140-6736(20)30419-0.

Jureidini, J. & McHenry, L.B. (2022). The illusion of evidence-based medicine. British Medical Journal 376:o702. https://doi.org/10.1136/bmj.o702.

Kanji, J.N., Zelyas, N., MacDonald, C., Pabbaraju, K., Khan, M.N., Prasad, A. et al. (2021). False negative rate of COVID-19 PCR testing: a discordant testing analysis. Virology Journal 18:13. https://doi.org/10.1186/s12985-021-01489-0.

Klement, R.J. & Bandyopadhyay, P.S. (2021). The epistemology of a positive SARS-CoV-2 test. Acta Biotheoretica 69:359-375. https://doi.org/10.1007/s10441-020-09393-w.

Kohmer, N., Rabenau, H.F., Hoehl, S., Kortenbusch, M., Ciesek, S. & Berger, A. (2021). Comparative analysis of point-of-care, high-throughput and laboratory-developed SARS-CoV-2 nucleic acid amplification tests (NATs). Journal of Virological Methods 291:114102. https://doi.org/10.1016/j.jviromet.2021.114102.

Koopmans, M. (26 Nov 2020). https://www.youtube.com/watch?v=flsF7trvq2c.

Konrad, R., Eberle, U., Dangel, A., Treis, B., Berger, A., Bengs, K. et al. (2020). Rapid establishment of laboratory diagnostics for the novel coronavirus SARS-CoV-2 in Bavaria, Germany, February 2020. Eurosurveillance 25:pii=2000173. https://doi.org/10.2807/1560-7917.ES.2020.25.9.2000173.

Layfield, L.J., Camp, S., Bowers, K. & Miller, D.C. (2021). SARS-CoV-2 detection by reverse transcriptase polymerase chain reaction testing: analysis of false positive results and recommendations for quality control measures. Pathology Research Practice 225:153579. https://doi.org/10.1016/j.prp.2021.153579.

Lee, S.H. (2021). qPCR is not PCR just as a straightjacket is not a jacket - the truth revealed by SARS-CoV-2 false-positive test results. Research Infotext 02:230–278. https://researchinfotext.com/article-details/qPCR-is-not-PCR-Just-as-a-Straightjacket-is-not-a-Jacket-the-Truth-Revealed-by-SARS-CoV-2-False-Positive-Test-Results.

Lee, S.H. (2022). Evidence-based evaluation of PCR diagnostics for SARS-CoV-2 and the Omicron variants by gold-standard Sanger sequencing. Science Public Health Policy & the Law 4:144-189. https://www.publichealthpolicyjournal.com/about-7.

Liu, D.X., Liang, J.Q. & Fung, T.S. (2021). Human Coronavirus-229E, -OC43, -NL63, and -HKU1 (Coronaviridae). Encyclopedia Virology, pp428–440. https://doi.org/10.1016/B978-0-12-809633-8.21501-X.

Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H. et al. (2020). Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395:565–574. https://doi.org/10.1016/S0140-6736(20)30251-8.

Lyons-Weiler, J. (2021). Balance of risk in COVID-19 reveals the extreme cost of false positives. International Journal of Vaccine Theory Practice and Research 1:209–222. https://doi.org/10.56098/ijvtpr.v1i2.15.

Mendoza, E.J., Manguiat, K., Wood, H. & Drebot, M. (2020). Two detailed plaque assay protocols for the quantification of infectious SARS-CoV-2. Current Protocols in Microbiology 57:ecpmc105. https://doi.org/10.1002/cpmc.105.

Miao, Z., Tidu, A., Eriani, G. & Martin, F. (2021). Secondary structure of the SARS-CoV-2 5'-UTR. RNA Biology 18:447-456. https://doi.org/10.1080/15476286.2020.1814556.P6.

Mohammadi-Dehcheshmeh, M., Moghbeli, S.M., Rahimirad, S., Alanazi, I.O., Shehri, Z.S.A. & Ebrahimie, E.A. (2021). Transcription regulatory sequence in the 5′ untranslated region of SARS-CoV-2 is vital for virus replication with an altered evolutionary pattern against human inhibitory microRNAs. Cells 10:319. https://doi.org/10.3390/cells10020319.P4.

Muenchhoff, M., Mairhofer, H., Nitschko, H., Grzimek-Koschewa, N., Hoffmann, D., Berger, A. et al. (2020). Multicentre comparison of quantitative PCR-based assays to detect SARS-CoV-2, Germany, March 2020. Eurosurveillance 5:pii=2001057. https://doi.org/10.2807/1560-7917.ES.2020.25.24.2001057.

Mullis, K.B. (1990). Target amplification for DNA analysis by the polymerase chain reaction. Annales de Biologie Clinique 48:579-582. https://pubmed.ncbi.nlm.nih.gov/2288446/.

Muth, D., Corman, V.M., Roth, H. et al. (2018). Attenuation of replication by a 29 nucleotide deletion in SARS-coronavirus acquired during the early stages of human-to-human transmission. Scientific Reports 8:15177. https://doi.org/10.1038/s41598-018-33487-8.

National Centre for Infectious Diseases and the Chapter of Infectious Disease Physicians, Academy of Medicine, Singapore. (23 May 2020). Available online: https://www.ncid.sg/Documents/Period%20of%20Infectivity%20Position%20Statementv2.pdf.

New York Times. (22 Jan 2007). https://www.nytimes.com/2007/01/22/health/22whoop.html.

NIH. BEI Resources Repository. https://www.niaid.nih.gov/research/bei-resources-repository.

Okba, N.M.A., Müller, M.A., Li, W., Wang, C., Geurtsvan-Kessel. C,H, Corman, V.M. et al. (2020) Severe Acute Respiratory Syndrome Coronavirus 2-specific antibody responses in coronavirus disease patients. Emerging Infectious Diseases 26:1478-1488. https://doi.org/10.3201/eid2607.200841.

Ong, S.W.X., Chia, T. & Young, B.E. (2022). SARS-CoV-2 variants of concern and vaccine escape, from alpha to omicron and beyond. Expert Review of Respiratory Medicine 16. https://doi.org/10.1080/17476348.2022.2057299.

Osorio, N.S. & Correia-Neves, M. (2020). Implication of SARS-CoV-2 evolution in the sensitivity of RT-qPCR diagnostic assays. Lancet Infectious Diseases 28:166-167. https://doi.org/10.1016/S1473-3099(20)30435-7.

Our World in Data. https://ourworldindata.org/explorers/coronavirus-data-explorer.

Paul-Ehrlich-Institut. (2020). https://www.pei.de/EN/newsroom/hp-news/2020/200323-COVID-19-nat-tests.html.

Pecoraro, V., Negro, A., Pirotti, T. & Trenti, T. (2021). Estimate false-negative RT-PCR rates for SARS-CoV-2. A systematic review and meta-analysis. European Journal of Clinical Investigation 52:e13706. https://doi.org/10.1111/eci.13706.

Penarrubia, L., Ruiz, M., Porco, R., Rao, S.N., Juanola-Falgarona, M., Manissero, D., López-Fontanals, M & Pareja, J. (2020). Multiple assays in a real-time RT-PCR SARS-CoV-2 panel can mitigate the risk of loss of sensitivity by new genomic variants during the COVID-19 outbreak. International Journal of Infectious Diseases 97:225-229. https://doi.org/10.1016/j.ijid.2020.06.027.

Perez, D.R. (2017). Reverse Genetics of RNA Viruses: Methods and Protocols. Methods in Molecular Biology 1602. Humana Press. ISBN: 978-1-4939-6964-7.

Perez, J.C., Moret-Chalmin, C., & Montagnier, L. (2023). Emergence of a new Creutzfeldt-Jakob Disease: 26 cases of the human version of Mad-Cow Disease, a few days after a COVID-19 injection. International Journal of Vaccine Theory, Practice, and Research, 3(1), 727–770. https://doi.org/10.56098/ijvtpr.v3i1.66

Poljak, M., Korva, M., Knap-Gašper, N., Komloš, K.F., Sagadin, M., Uršič, T., et al. (2020). Clinical evaluation of the Cobas SARS-CoV-2 test and a diagnostic platform switch during 48 hours in the midst of the COVID-19 pandemic. Journal of Clinical Microbiology 58:e00599-20. https://doi.org/10.1128/JCM.00599-20.

Puhach, O., Meyer, B. & Eckerle, I. (2022). SARS-CoV-2 viral load and shedding kinetics. Nature Reviews Microbiology 21:147–161. https://doi.org/10.1038/s41579-022-00822-w.

Ren, L.L., Wang, Y.M., Wu, Z.Q., Xiang, Z.C., Guo, L., Xu, T. et al. (2020). Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study. Chinese Medical Journal 133:1015–1024. https://doi.org/10.1097/CM9.0000000000000722.

Reusken, C., Broberg, E.K., Haagmans, B., Meijer, A., Corman, V.M., Papa, A. et al. (2020). Laboratory readiness and response for novel coronavirus (2019-nCoV) in expert laboratories in 30 EU/EEA countries, January 2020. Eurosurveillance 25:2000082. https://doi.org/10.2807/1560-7917.ES.2020.25.6.2000082.

Reuters. (31 Dec 2019). https://www.reuters.com/article/us-china-health-pneumonia-idUSKBN1YZ0GP.

Risi, G. F., Bloom, M. E., Hoe, N. P., Arminio, T., Carlson, P., Powers, T., Feldmann, H., & Wilson, D. (2010). Preparing a Community Hospital to Manage Work-related Exposures to Infectious Agents in Bio Safety Level 3 and 4 Laboratories. Emerging Infectious Diseases, 16(3), 373–378. https://doi.org/10.3201/eid1603.091485

Skittrall, J.P., Wilson, M., Smielewska, A.A., Parmar, S., Fortune, M.D., Sparkes, D., Curran, M.D., Zhang, H. & Jalal, H. (2020). Specificity and positive predictive value of SARS-CoV-2 nucleic acid amplification testing in a low prevalence setting. Clinical Microbiology & Infection 14:S1198-743X(20)30614-5. https://doi.org/10.1016/j.cmi.2020.10.003.

Stang, A., Robers, J., Schonert, B., Jöckel, K.H., Spelsberg, A., Keil, U. & Cullen, P. (2021). The performance of the SARS-CoV-2 RT-PCR test as a tool for detecting SARS-CoV-2 infection in the population. Journal of Infection 83:237-279. https://doi.org/10.1016/j.jinf.2021.05.022.

Struyf, T., Deeks, J.J., Dinnes, J., Takwoingi, Y., Davenport, C., Leeflang, M.M. et al. (2020). Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19 disease. Cochrane Database Systematic Reviews 7:CD013665. https://doi.org/10.1002/14651858.CD013665.

Sun, Y., Lin, W., Dong, W. & Xu, J. (2022). Origin and evolutionary analysis of the SARS-CoV-2 Omicron variat. Journal of Biosafety and Biosecurity 4:3337. https://doi.org/10.1016/j.jobb.2021.12.001.

Tan, W., Zhao, X., Ma, X., Wang, W., Niu, P., Xu, W. et al. (2020). Notes from the field: a novel coronavirus genome identified in a cluster of pneumonia cases — Wuhan, China 2019−2020. China CDC Weekly 2:61-62. https://doi.org/10.46234/ccdcw2020.017.

Tao, Y., Yue, Y., Qiu, G., Ji, Z., Spillman, M., Gai, Z. et al. (2022). Comparison of analytical sensitivity and efficiency for SARS-CoV-2 primer sets by TaqMan-based and SYBR Green-based RT-qPCR. Applied Microbiology and Biotechnology 106:2207-2218. https://doi.org/10.1007/s00253-022-11822-4.

Tib Molbiol. Instructions for use. LightMix® Modular Wuhan CoV RdRP-gene. Cat.-No. 53-0777-96. https://www.roche-as.es/lm_pdf/MDx_53-0777_96_Wuhan-R-gene_V200204_09155376001%20%282%29.pdf.

The Open Science Prize, Nextstrain: Real-time tracking of pathogen evolution. Genomic epidemiology of novel coronavirus. 2020. https://nextstrain.org/ncov.

Verna, R., Alallon, W., Murakami, M., Hayward, C.P.M., Harrath, A.H., Alwasel, S.H. et al. (2021). Analytical performance of COVID-19 detection methods (RT-PCR): scientific and societal concerns. Life 11:660-676. https://doi.org/10.3390/life11070660.

Wernike, K., Keller, M., Conraths, F.J., Mettenleiter, T.C., Groschup, M.H. & Beer, M. (2020). Pitfalls in SARS-CoV-2 PCR diagnostics. Transboundary & Emerging Diseases 14:10.1111/tbed.13684. https://doi.org/10.1111/tbed.13684.

WHO. (2003) Consensus document on the epidemiology of severe acute respiratory syndrome (SARS). [Original link https://www.who.int/csr/sars/en/WHOconsensus.pdf has been transferred to https://apps.who.int/iris/bitstream/handle/10665/70863/WHO_CDS_CSR_GAR_2003.11_eng.pdf].

WHO. (13 Jan 2020). https://www.who.int/docs/default-source/coronaviruse/wuhan-virus-assay-v1991527e5122341d99287a1b17c111902.pdf?sfvrsn=d381fc88_2.

WHO. (30 Jan 2020). https://www.paho.org/en/news/30-1-2020-who-declares-public-health-emergency-novel-coronavirus.

WHO. (28 Feb 2020). https://www.who.int/publications/i/item/report-of-the-who-china-joint-mission-on-coronavirus-disease-2019-(COVID-19).

WHO. (2 Mar 2020). Laboratory testing for coronavirus disease 2019 (COVID-19) in suspected human cases. https://apps.who.int/iris/bitstream/handle/10665/331329/WHO-COVID-19-laboratory-2020.4-eng.pdf?sequence=1&isAllowed=y.

WHO. (11 Mar 2020). https://www.paho.org/en/news/11-3-2020-who-characterizes-COVID-19-pandemic.

WHO. (16 Mar 2020). https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-COVID-19---16-march-2020.

WHO. (19 Mar 2020). Laboratory testing for coronavirus disease (COVID-19) in suspected human cases. https://www.who.int/publications/i/item/10665-331501.

WHO. (8 Jan 2021). Genomic sequencing of SARS-CoV-2: a guide to implementation for maximum impact on public health. https://www.who.int/publications/i/item/9789240018440.

WHO. (20 Jan 2021). Information Notice for Users 2020/05: Nucleic acid testing (NAT) technologies that use polymerase chain reaction (PCR) for detection of SARS-CoV-2. https://www.who.int/news/item/20-01-2021-who-information-notice-for-ivd-users-2020-05.

WHO. (24 Jan 2021) https://www.who.int/docs/default-source/coronaviruse/whoinhouseassays.pdf. [Original link https://www.who.int/docs/default-source/coronaviruse/wuhan-virus-assay-v1991527e 5122341d99287a1b17c111902.pdf has been removed, as on 24 Jan 2021, WHO summarized individual protocols in one pdf-file with the original Charité protocol from 17 Jan 2020 located at pages 60-72].

Wölfel, R., Corman, V.M., Guggemos, W., Seilmaier, M., Zange, S., Müller, M.A. et al. (2020). Virological assessment of hospitalized patients with Covid-2019. Nature 581:465–469. https://doi.org/10.1038/s41586-020-2196-x.

Yang, D. & Leibowitz, J.L. (2015). The structure and functions of coronavirus genomic 3´and 5´ ends. Virus Research 206:120-133. https://doi.org/10.1016/j.virusres.2015.02.025.

Zeichhardt, M. & Kammel, M. (2020). Kommentar zum Extra Ringversuch Gruppe 340 Virusgenom-Nachweis SARS-CoV-2. https://corona-ausschuss.de/wp-content/uploads/2020/07/Instand-Ringversuch-Virusgenom-Nachweis-SARS-CoV-2.pdf.

Zimmermann, F., Urban, M., Krüger, C., Walter, M., Wölfel, R. & Zwirglmaier, K. (2022). In vitro evaluation of the effect of mutations in primer binding sites on detection of SARS-CoV-2 by RT-qPCR. Journal of Virological Methods 299:114352. https://doi.org/10.1016/j.jviromet.2021.114352.

Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J. et al. (2020). A novel coronavirus from patients with pneumonia in China. New England Journal of Medicine 382:727-733. https://doi.org/10.1056/NEJMoa2001017.

Downloads

Published

2023-04-04

How to Cite

RT-PCR Test Targeting the Conserved 5’-UTR of SARS-CoV-2 Overcomes Shortcomings of the First WHO-Recommended RT-PCR Test. (2023). International Journal of Vaccine Theory, Practice, and Research , 3(1), 818-846. https://doi.org/10.56098/ijvtpr.v3i1.71

Similar Articles

1-10 of 62

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)