This is an outdated version published on 2021-09-17. Read the most recent version.

Receipt of HPV Vaccine Associated with Increased Prevalence of High-Risk HPV Infections

Authors

  • Gayle Delong Baruch College/City University of New York

Keywords:

aluminum adjuvant, HPV vaccine, type-replacement, vaccine safety

Abstract

Identifying possible negative side effects of vaccines helps to determine whether benefits outweigh the costs of a medical intervention that claims to prevent a disease. Such a cost-benefit analysis is essential both for vaccine policy as well as informed consent. This study seeks to determine whether the use of the human papillomavirus (HPV) vaccine is related to an increase in high-risk (HR), possibly cancer related, HPV infections. Data from the U.S. National Health and Examination Nutrition Survey reveal a statistically significantly higher percentage of women who received an HPV vaccine carried an HR-HPV than women who did not receive an HPV shot (Rao-Scott Chi-square contrast p-value of 0.002). Vaccine recipients tested positive less frequently for HPVs targeted by the vaccines, but had a higher prevalence of other HR (cancer related) HPVs. The results suggest that a thorough investigation of the effects of HPV vaccines on HR-HPV viruses (and other pathogens) not targeted by them is warranted.

Author Biography

Gayle Delong, Baruch College/City University of New York

Associate Professor in the Department of Economics and Finance

References

Benn, C. S., Netea, M. G., Selin, L. K., & Aaby, P. (2013). A small jab—A big effect: Nonspecific immunomodulation by vaccines. Trends Immunol, 34(9), 431–439. https://doi.org/S1471-4906(13)00058-6 [pii] 10.1016/j.it.2013.04.004

Canadian Agency for Drugs and Technologies in Health. (2013). Genotyping of Human Papillomavirus Viruses Using Linear Array. https://www.cadth.ca/sites/default/files/pdf/lab-tests/04_Genotyping_of_HPV_e.pdf

Centers for Disease Control and Prevention. (2019). National Health and Nutrition Examination Survey. https://www.cdc.gov/nchs/nhanes/index.htm

Chen, T.-C., Clark, J., Riddles, M., & Mohadjer, L. K. (2020). National Health and Nutrition Examination Survey, 2015-2018: Sample Design and Estimation Procedures. Vital and Health Statistics, 2(184). https://www.cdc.gov/nchs/data/series/sr_02/sr02-184-508.pdf

Eklund, C., Forslund, O., Wallin, K.-L., & Dillner, J. (2014). Global improvement in genotyping of human papillomavirus DNA: The 2011 HPV LabNet International Proficiency Study. Journal of Clinical Microbiology, 52(2), 449–459. https://doi.org/10.1128/JCM.02453-13

Eklund, C., Forslund, O., Wallin, K.-L., Zhou, T., & Dillner, J. (2012). The 2010 Global Proficiency Study of Human Papillomavirus Genotyping in Vaccinology. Journal of Clinical Microbiology. https://journals.asm.org/doi/abs/10.1128/jcm.00840-12

Flores-Miramontes, M. G., Torres-Reyes, L. A., Alvarado-Ruíz, L., Romero-Martínez, S. A., Ramírez-Rodríguez, V., Balderas-Peña, L. M. A., Vallejo-Ruíz, V., Piña-Sánchez, P., Cortés-Gutiérrez, E. I., Jave-Suárez, L. F., & Aguilar-Lemarroy, A. (2015). Human papillomavirus genotyping by Linear Array and Next-Generation Sequencing in cervical samples from Western Mexico. Virology Journal, 12(1), 161. https://doi.org/10.1186/s12985-015-0391-4

Gravitt, P. E. (2011). The known unknowns of HPV natural history. The Journal of Clinical Investigation, 121(12), 4593–4599. https://doi.org/10.1172/JCI57149

Guo, F., Hirth, J. M., & Berenson, A. B. (2015). Comparison of HPV prevalence between HPV-vaccinated and non-vaccinated young adult women (20-26 years). Hum Vaccin Immunother, 11(10), 2337–2344. https://doi.org/10.1080/21645515.2015.1066948

Halec, G., Alemany, L., Lloveras, B., Schmitt, M., Alejo, M., Bosch, F. X., Tous, S., Klaustermeier, J. E., Guimera, N., Grabe, N., Lahrmann, B., Gissmann, L., Quint, W., de Sanjose, S., & Pawlita, M. (2014). Pathogenic role of the eight probably/possibly carcinogenic HPV types 26, 53, 66, 67, 68, 70, 73 and 82 in cervical cancer. J Pathol, 234(4), 441–451. https://doi.org/10.1002/path.4405

Holland, M., Rosenberg, K. M., & Iorio, E. (2018). The HPV Vaccine On Trial: Weighing the Evidence (Chapter 7). Skyhorse Publishing.

HPV Centre. (2015). HPV prevention at a glance. https://hpvcentre.net/hpvatglance.php

Li, M., Yang, X., Zhuang, C., Cao, Z., Ren, L., Xiu, C., Li, Y., & Zhu, Y. (2015). NE Strengthens the Immunosuppression Induced by AlCl3 Through β2-AR/cAMP Pathway in Cultured Rat Peritoneal Macrophages. Biological Trace Element Research, 164(2), 234–241. https://doi.org/10.1007/s12011-014-0217-z

Marrack, P., McKee, A. S., & Munks, M. W. (2009). Towards an understanding of the adjuvant action of aluminium. Nat Rev Immunol, 9(4), 287–293. https://doi.org/nri2510 [pii] 10.1038/nri2510

McKee, A. S., Munks, M. W., & Marrack, P. (2007). How do adjuvants work? Important considerations for new generation adjuvants. Immunity, 27(5), 687–690. https://www-sciencedirect-com.ezproxyprod.ucs.louisiana.edu/science/article/pii/S1074761307004980

Muñoz, N., Bosch, F. X., Castellsagué, X., Díaz, M., Sanjose, S. de, Hammouda, D., Shah, K. V., & Meijer, C. J. L. M. (2004). Against which human papillomavirus types shall we vaccinate and screen? The international perspective. International Journal of Cancer, 111(2), 278–285. https://doi.org/10.1002/ijc.20244

Oleszycka, E., McCluskey, S., Sharp, F. A., Muñoz-Wolf, N., Hams, E., Gorman, A. L., Fallon, P. G., & Lavelle, E. C. (2018). The vaccine adjuvant alum promotes IL-10 production that suppresses Th1 responses. European Journal of Immunology, 48(4), 705–715. https://doi.org/10.1002/eji.201747150

Rees, C. P., Brhlikova, P., & Pollock, A. M. (2020). Will HPV vaccination prevent cervical cancer? Journal of the Royal Society of Medicine, 113(2), 64–78. https://doi.org/10.1177/0141076819899308

Romagnani, S. (1996). Th1 and Th2 in human diseases. Clin Immunol Immunopathol, 80(3 Pt 1), 225–235. https://doi.org/S009012299690118X [pii] https://doi.org/10.1006/clin.1996.0118

Shardlow, E., Mold, M., & Exley, C. (2018). Unraveling the enigma: Elucidating the relationship between the physicochemical properties of aluminium-based adjuvants and their immunological mechanisms of action. Allergy Asthma Clin Immunol, 14, 80. https://aacijournal.biomedcentral.com/articles/10.1186/s13223-018-0305-2

Sharma, S., & Thomas, P. G. (2014). The two faces of heterologous immunity: Protection or immunopathology. J Leukoc Biol, 95(3), 405–416. https://doi.org/jlb.0713386 [pii] 10.1189/jlb.0713386

Strickler, H. D., Burk, R. D., Fazzari, M., Anastos, K., Minkoff, H., Massad, L. S., Hall, C., Bacon, M., Levine, A. M., Watts, D. H., Silverberg, M. J., Xue, X., Schlecht, N. F., Melnick, S., & Palefsky, J. M. (2005). Natural history and possible reactivation of human papillomavirus in human immunodeficiency virus-positive women. J Natl Cancer Inst, 97(8), 577–586. https://doi.org/97/8/577 [pii] 10.1093/jnci/dji073

Theiler, R. N., Farr, S. L., Karon, J. M., Paramsothy, P., Viscidi, R., Duerr, A., Cu-Uvin, S., Sobel, J., Shah, K., Klein, R. S., & Jamieson, D. J. (2010). High-risk human papillomavirus reactivation in human immunodeficiency virus-infected women: Risk factors for cervical viral shedding. Obstet Gynecol, 115(6), 1150–1158. https://journals.lww.com/greenjournal/FullText/2010/06000/High_Risk_Human_Papillomavirus_Reactivation_in.9.aspx

VRBPAC. (2006). Background Document: GardasilTM HPV Quadrivalent Vaccine (Tables 17, 19 and 21). https://wayback.archive-it.org/7993/20180126170205/https://www.fda.gov/ohrms/dockets/ac/06/briefing/2006-4222B3.pdf

World Health Organization. (2021). Human papillomavirus (HPV) and cervical cancer. Retrieved March 17, 2020, from https://www.who.int/news-room/fact-sheets/detail/human-papillomavirus-(hpv)-and-cervical-cancer

Downloads

Published

2021-09-17 — Updated on 2021-09-17

Versions

How to Cite

Delong, G. (2021). Receipt of HPV Vaccine Associated with Increased Prevalence of High-Risk HPV Infections. International Journal of Vaccine Theory, Practice, and Research, 2(1). Retrieved from https://ijvtpr.com/index.php/IJVTPR/article/view/28