Potential Conscientious Objection to mRNA Technology as Preventive Treatment for COVID-19

Authors

  • Patrick Provost Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada https://orcid.org/0000-0002-6099-6562
  • Nicolas Derome Département de biologie, Institut de biologie intégrative et des systèmes, Université Laval, Québec, QC, Canada
  • Christian Linard Université du Québec à Trois-Rivières
  • Bernard Massie Retired general manager of the Human Health Therapeutics portfolio, National Research Council of Canada, Montreal, QC, Canada
  • Jean Caron Département de Psychiatrie, Université McGill, QC, Canada

DOI:

https://doi.org/10.56098/ijvtpr.v2i2.41

Keywords:

Conscientious objection, messenger RNA technology, preventive treatment for COVID-19

Abstract

In the context of mass vaccination campaigns, the most widely used vaccines in Western countries are based on messenger RNA (mRNA). Some countries have imposed mandatory vaccination and many others have required a vaccination passport to access public transportation and many activities, producing systemic discrimination, social exclusion, segregation, and stigmatization against non-vaccinated individuals. This paper aims to present several scientific uncertainties on which, conscientious objectors to mRNA injections as a preventive treatment for COVID-19, could rely. Scientific data are presented on mRNA vaccines, which consist in mRNAs wrapped in lipid nanoparticles. Never used as a prophylactic drug, artificial mRNAs delivered to our cells forces them to express, against their nature, a biologically active viral protein. Unlike a drug produced in a pharmaceutical factory and formulated at a known dose and a well-defined protein product profile, the mRNA vaccine acts as a pro-drug encoding for the viral Spike protein of the virus to be produced by our own cells; both the dose and the quality of the proteins produced are unknown. We also ignore the distribution of the lipid nanoparticles carrying this mRNA in our body. We consider that the “conscientious objection” raised by the above considerations is a reason enough to refuse mRNA vaccines or similar technologies as a preventive treatment against COVID-19.

References

Agashe, D., Martinez-Gomez, N. C., Drummond, D. A., & Marx, C. J. (2013). Good codons, bad transcript: Large reductions in gene expression and fitness arising from synonymous mutations in a key enzyme. Molecular Biology and Evolution, 30(3), 549–560. https://doi.org/10.1093/molbev/mss273

Baumeier, C., Aleshcheva, G., Harms, D., Gross, U., Hamm, C., Assmus, B., Westenfeld, R., Kelm, M., Rammos, S., Wenzel, P., Münzel, T., Elsässer, A., Gailani, M., Perings, C., Bourakkadi, A., Flesch, M., Kempf, T., Bauersachs, J., Escher, F., & Schultheiss, H.-P. (2022). Intramyocardial Inflammation after COVID-19 Vaccination: An Endomyocardial Biopsy-Proven Case Series. International Journal of Molecular Sciences, 23(13), 6940. https://doi.org/10.3390/ijms23136940

Benzi-Cipelli, R., Giovannini, F., & Pisano, G. (2022). Dark -Field Microscopic Analysis on the Blood of 1,006 Symptomatic Persons After Anti-COVID mRNA Injections from Pfizer/BioNtech or Moderna. International Journal of Vaccine Theory, Practice, and Research, 2(2), 385–444. https://doi.org/10.56098/ijvtpr.v2i2.47

Chen, Y., Xu, Z., Wang, P., Li, X.-M., Shuai, Z.-W., Ye, D.-Q., & Pan, H.-F. (2022). New-onset autoimmune phenomena post-COVID-19 vaccination. Immunology, 165(4), 386–401. https://doi.org/10.1111/imm.13443

Chung, Y. H., Beiss, V., Fiering, S. N., & Steinmetz, N. F. (2020). COVID-19 vaccine frontrunners and their nanotechnology design. ACS Nano, 14(10), 12522–12537. https://doi.org/10.1021/acsnano.0c07197

Dolgin, E. (2021). The tangled history of mRNA vaccines. Nature, 597(7876), 318–324. https://www.icpcovid.com/sites/default/files/2021-09/Ep%20173-0%20The%20tangled%20history%20of%20mRNA%20vaccines.pdf

European Medicines Agency. (2020, December 21). Assessment Report: Invented Name “Comirnaty” [Text]. European Medicines Agency. https://www.ema.europa.eu/en/medicines/human/EPAR/comirnaty

Fay, M. M., Lyons, S. M., & Ivanov, P. (2017). RNA G-Quadruplexes in Biology: Principles and Molecular Mechanisms. Journal of Molecular Biology, 429(14), 2127–2147. https://doi.org/10.1016/j.jmb.2017.05.017

Fraiman, J., Erviti, J., Jones, M., Greenland, S., Whelan, P., Kaplan, R. M., & Doshi, P. (2022). Serious Adverse Events of Special Interest Following mRNA Vaccination in Randomized Trials. https://papers.ssrn.com/abstract=4125239

Ghisolfi, S., Almås, I., Sandefur, J. C., von Carnap, T., Heitner, J., & Bold, T. (2020). Predicted COVID-19 fatality rates based on age, sex, comorbidities and health system capacity. BMJ Global Health, 5(9), e003094. https://doi.org/10.1136/bmjgh-2020-003094

Global Affairs Canada. (2021, December 21). COVID-19 Boarding flights and trains in Canada – Travel.gc.ca. https://travel.gc.ca/travel-covid/travel-restrictions/domestic-travel

Hart, R. (2021, May 11). COVID Surges in 4 of 5 Most Vaccinated Countries—Here’s Why the US Should Worry. Forbes. https://www.forbes.com/sites/roberthart/2021/05/11/covid-surges-in-4-of-5-worlds-most-vaccinated-countries-heres-why-the-us-should-worry/?sh=320eccd0d677

Hart, R. (2021, May 29). Some countries with the highest vaccination rates are facing a surge in COVID deaths and infections—Experts say complacency is partly to blame. Forbes. https://www.forbes.com/sites/roberthart/2021/05/29/some-countries-with-the-highest-vaccination-rates-are-facing-a-surge-in-covid-deaths-and-infectionsexperts-say-complacency-is-partly-to-blame/

Hinrichsen, V. L., Kruskal, B., O’brien, M. A., Lieu, T. A., & Platt, R. (2007). Using electronic medical records to enhance detection and reporting of vaccine adverse events. Journal of the American Medical Informatics Association, 14(6), 731–735. https://doi.org/10.1197/jamia.M2232

Horowitz, D. (2022, August 15). German insurance claims hint at millions of unreported vaccine injuries. Conservative Review. https://www.conservativereview.com/horowitz-german-insurance-claims-vaccine-injury-2657863726.html

Ioannidis, J. P. A. (2021). Reconciling estimates of global spread and infection fatality rates of COVID-19: An overview of systematic evaluations. European Journal of Clinical Investigation, 51(5), e13554. https://doi.org/10.1111/eci.13554

Klomjit, N., Alexander, M. P., Fervenza, F. C., Zoghby, Z., Garg, A., Hogan, M. C., Nasr, S. H., Minshar, M. A., & Zand, L. (2021). COVID-19 Vaccination and Glomerulonephritis. Kidney International Reports, 6(12), 2969–2978. https://doi.org/10.1016/j.ekir.2021.09.008

Lamb, Y. N. (2021). BNT162b2 mRNA COVID-19 Vaccine: First Approval. Drugs, 81(4), 495–501. https://doi.org/10.1007/s40265-021-01480-7

Laplante, C. (2021, August 5). Le passeport vaccinal à travers le monde [The vaccine passport throughout the world]. La Presse. https://www.lapresse.ca/international/2021-08-05/le-passeport-vaccinal-a-travers-le-monde.php

Lee, Y. M., Park, S., & Jeon, K.-Y. (2022). Foreign materials in blood samples of recipients of COVID-19 vaccines. International Journal of Vaccine Theory, Practice, and Research, 2(1), 249–265. https://ijvtpr.com/index.php/IJVTPR/article/view/37

Lyons-Weiler, J. (2020). Pathogenic priming likely contributes to serious and critical illness and mortality in COVID-19 via autoimmunity. Journal of Translational Autoimmunity, 3, 100051. https://doi.org/10.1016/j.jtauto.2020.100051

Magen, E., Mukherjee, S., Bhattacharya, M., Detroja, R., Merzon, E., Blum, I., Livoff, A., Shlapobersky, M., Baum, G., Talisman, R., Cherniavsky, E., Dori, A., & Frenkel-Morgenstern, M. (2022). Clinical and Molecular Characterization of a Rare Case of BNT162b2 mRNA COVID-19 Vaccine-Associated Myositis. Vaccines, 10(7), 1135. https://doi.org/10.3390/vaccines10071135

Mauro, V. P., & Chappell, S. A. (2014). A critical analysis of codon optimization in human therapeutics. Trends in Molecular Medicine, 20(11), 604–613. https://doi.org/10.1016/j.molmed.2014.09.003

McCarthy, C., Carrea, A., & Diambra, L. (2017). Bicodon bias can determine the role of synonymous SNPs in human diseases. BMC Genomics, 18(1), 227. https://doi.org/10.1186/s12864-017-3609-6

Merriam-Webster Dictionary. (2022). Definition of CONSCIENTIOUS OBJECTION. https://www.merriam-webster.com/dictionary/conscientious+objection

Morais, P., Adachi, H., & Yu, Y.-T. (2021). The critical contribution of pseudouridine to mRNA COVID-19 vaccines. Frontiers in Cell and Developmental Biology, 9, 789427. https://doi.org/10.3389/fcell.2021.789427

Nance, K. D., & Meier, J. L. (2021). Modifications in an Emergency: The Role of N1-Methylpseudouridine in COVID-19 Vaccines. ACS Central Science, 7(5), 748–756. https://doi.org/10.1021/acscentsci.1c00197

Oller, J. W., & Santiago, D. (2022). All Cause Mortality and COVID-19 Injections: Evidence from 28 Weeks of Public Health England “COVID-19 Vaccine Surveillance Reports.” International Journal of Vaccine Theory, Practice, and Research, 2(2), 301–319. https://doi.org/10.56098/ijvtpr.v2i2.42

Østein, K., Hovi, P., Husby, A., Härkänen, T., Selmer, R. M., Pihlström, N., Hansen, J. V., Nohynek, H., Gunnes, N., Sundström, A., Wohlfahrt, J., Nieminen, T. A., Grünewald, M., Gulseth, H. L., Hviid, A., & Ljung, R. (2022). Sars-Cov-2 vaccination and myocarditis in a Nordic cohort study of 23 million residents. JAMA Cardiology, 7(6), 600–612. https://doi.org/10.1001/jamacardio.2022.0583

Osterholm, M., & Oakes, J. M. (2021). Counterpoint: Vaccine mandate at U would be counterproductive. Star Tribune.

Pardi, N., Hogan, M. J., Porter, F. W., & Weissman, D. (2018). mRNA vaccines—A new era in vaccinology. Nature Reviews Drug Discovery, 17(4), 261–279. https://doi.org/10.1038/nrd.2017.243

Pardi, N., Tuyishime, S., Muramatsu, H., Kariko, K., Mui, B. L., Tam, Y. K., Madden, T. D., Hope, M. J., & Weissman, D. (2015). Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. Journal of Controlled Release, 217, 345–351. https://doi.org/10.1016/j.jconrel.2015.08.007

Patterson, B. K., Francisco E. B., Yogendra R., Long E., Pise A., Beaty C., Osgood E., Bream J. Kreimer M., Vander Heide R., Guevara-Coto J. Mora R., Mora J. SARS-CoV-2 S1 Protein Persistence in SARS-CoV-2 Negative Post-Vaccination Individuals with Long COVID/ PASC-Like Symptoms, 12 July 2022, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-1844677/v1]

Patterson, B. K., Francisco, E. B., Yogendra, R., Long, E., Pise, A., Rodrigues, H., Hall, E., Herrera, M., Parikh, P., Guevara-Coto, J., Triche, T. J., Scott, P., Hekmati, S., Maglinte, D., Chang, X., Mora-Rodríguez, R. A., & Mora, J. (2022). Persistence of SARS CoV-2 S1 Protein in CD16+ Monocytes in Post-Acute Sequelae of COVID-19 (PASC) up to 15 Months Post-Infection. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.746021

Paul, W. E. (2013). Fundamental immunology. Wolters Kluwer Health/Lippincott Williams & Wilkins.

Pfizer Confidential. (2022). BNT162b2 Risk Management Plan. Pfizer. https://www.ema.europa.eu/en/documents/rmp-summary/comirnaty-epar-risk-management-plan_en.pdf

Polack, F. P., Thomas, S. J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Perez, J. L., Pérez Marc, G., Moreira, E. D., Zerbini, C., Bailey, R., Swanson, K. A., Roychoudhury, S., Koury, K., Li, P., Kalina, W. V., Cooper, D., Frenck, R. W., Hammitt, L. L., … Gruber, W. C. (2020). Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. New England Journal of Medicine, 383(27), 2603–2615. https://doi.org/10.1056/NEJMoa2034577

Röltgen, K., Nielsen, S. C. A., Silva, O., Younes, S. F., Zaslavsky, M., Costales, C., Yang, F., Wirz, O. F., Solis, D., Hoh, R. A., Wang, A., Arunachalam, P. S., Colburg, D., Zhao, S., Haraguchi, E., Lee, A. S., Shah, M. M., Manohar, M., Chang, I., … Boyd, S. D. (2022). Immune imprinting, breadth of variant recognition, and germinal center response in human SARS-CoV-2 infection and vaccination. Cell, 185(6), 1025-1040.e14. https://doi.org/10.1016/j.cell.2022.01.018

Ruggeri, R. M., Giovanellla, L., & Campennì, A. (2022). SARS-CoV-2 vaccine may trigger thyroid autoimmunity: Real-life experience and review of the literature. Journal of Endocrinological Investigation. https://doi.org/10.1007/s40618-022-01863-x

Sasson, I. (2021). Age and COVID-19 mortality: A comparison of Gompertz doubling time across countries and causes of death. Demographic Research, 44, 379–396. https://www.jstor.org/stable/27032918

Scioli Montoto, S., Muraca, G., & Ruiz, M. E. (2020). Solid Lipid Nanoparticles for Drug Delivery: Pharmacological and Biopharmaceutical Aspects. Frontiers in Molecular Biosciences, 7. https://www.frontiersin.org/articles/10.3389/fmolb.2020.587997

Singanayagam, A., Hakki, S., Dunning, J., Madon, K. J., Crone, M. A., Koycheva, A., Derqui-Fernandez, N., Barnett, J. L., Whitfield, M. G., Varro, R., Charlett, A., Kundu, R., Fenn, J., Cutajar, J., Quinn, V., Conibear, E., Barclay, W., Freemont, P. S., Taylor, G. P., … Lackenby, A. (2022). Community transmission and viral load kinetics of the SARS-CoV-2 delta (B.1.617.2) variant in vaccinated and unvaccinated individuals in the UK: A prospective, longitudinal, cohort study. The Lancet Infectious Diseases, 22(2), 183–195. https://doi.org/10.1016/S1473-3099(21)00648-4

Subramanian, S. V., & Kumar, A. (2021). Increases in COVID-19 are unrelated to levels of vaccination across 68 countries and 2947 counties in the United States. European Journal of Epidemiology, 36(12), 1237–1240. https://doi.org/10.1007/s10654-021-00808-7

Suzuki, Y. J., & Gychka, S. G. (2021). SARS-CoV-2 spike protein elicits cell signaling in human host cells: Implications for possible consequences of COVID-19 vaccines. Vaccines, 9(1), 36. https://doi.org/10.3390/vaccines9010036

Suzuki, Y. J., Nikolaienko, S. I., Dibrova, V. A., Dibrova, Y. V., Vasylyk, V. M., Novikov, M. Y., Shults, N. V., & Gychka, S. G. (2021). SARS-CoV-2 spike protein-mediated cell signaling in lung vascular cells. Vascular Pharmacology, 137, 106823. https://doi.org/10.1016/j.vph.2020.106823

Touriel, A. (2022). COVID-19 dans le monde: Quels sont les pays qui ont imposé la vaccination? [COVID-19 in the world: Which countries have mandated vaccination?]. RTBF, Belgian Radio-Television of the French Community, Branded as Rtbf.Be.

Verkerk, R., Kathrada, N., Plothe, C., & Lindley, K. (2022). Self-Selected COVID-19 “Unvaccinated” Cohort Reports Favorable Health Outcomes and Unjustified Discrimination in Global Survey. International Journal of Vaccine Theory, Practice, and Research, 2(2), 321–354. https://ijvtpr.com/index.php/IJVTPR/article/view/43

Vojdani, A., & Kharrazian, D. (2020). Potential antigenic cross-reactivity between SARS-CoV-2 and human tissue with a possible link to an increase in autoimmune diseases. Clinical Immunology (Orlando, Fla.), 217, 108480. https://doi.org/10.1016/j.clim.2020.108480

Vojdani, A., Vojdani, E., & Kharrazian, D. (2021). Reaction of Human Monoclonal Antibodies to SARS-CoV-2 Proteins With Tissue Antigens: Implications for Autoimmune Diseases. Frontiers in Immunology, 11, 617089. https://doi.org/10.3389/fimmu.2020.617089

Young, R. O. (2022). Scanning and transmission electron microscopy reveals graphene oxide in CoV-19 vaccines. Acta Scientific Medical Sciences, 6(8), 98–111. https://doi.org/10.31080/ASMS.2022.06.1351

Zhou, M., Guo, J., Cha, J., Chae, M., Chen, S., Barral, J. M., Sachs, M. S., & Liu, Y. (2013). Non-optimal codon usage affects expression, structure and function of clock protein FRQ. Nature, 495(7439), 111–115. https://doi.org/10.1038/nature11833

Downloads

Published

2022-08-23

How to Cite

Potential Conscientious Objection to mRNA Technology as Preventive Treatment for COVID-19. (2022). International Journal of Vaccine Theory, Practice, and Research , 2(2), 445-454. https://doi.org/10.56098/ijvtpr.v2i2.41

Similar Articles

1-10 of 53

You may also start an advanced similarity search for this article.